Revision: 1.5 - (view) (download)
1 : | ktanaka | 1.1 | (declare (simple-thresh points) special) |
2 : | (setq simple-thresh 0.25) | ||
3 : | ; | ||
4 : | (defun prinderr (l) | ||
5 : | (lets ((standard-output terminal-output)) | ||
6 : | (prind l))) | ||
7 : | ; | ||
8 : | ; yokosort | ||
9 : | ; | ||
10 : | (defun yokosort (prim) | ||
11 : | (lets ((nprim (simplify-prim prim)) | ||
12 : | (points (car nprim)) | ||
13 : | (lines (cadr nprim)) | ||
14 : | (yokolines nil) | ||
15 : | (yokotree nil) | ||
16 : | (otherlines nil) | ||
17 : | (spaces nil) | ||
18 : | (assumed nil) | ||
19 : | ) | ||
20 : | ; (break) | ||
21 : | (setq spaces nil) | ||
22 : | (do ((l lines (cdr l))) | ||
23 : | ((atom l)) | ||
24 : | (cond ((eq (caar l) 'yoko) | ||
25 : | (push (car l) yokolines)) | ||
26 : | (t (push (car l) otherlines)))) | ||
27 : | (setq yokolines (sort yokolines | ||
28 : | (function (lambda (x y) | ||
29 : | ktanaka | 1.4 | ; (prind `(x ,x)) |
30 : | ; (prind `(y ,y)) | ||
31 : | ktanaka | 1.1 | (lets ((p0 (nth (caadr x) points)) |
32 : | (p1 (nth (caadr y) points))) | ||
33 : | (lessp (cadr p0) (cadr p1))))))) | ||
34 : | ; (do ((l yokolines (cdr l))) | ||
35 : | ; ((atom l)) | ||
36 : | ; (prinderr (list (nth (caadar l) points)(nth (cadadr (car l)) points)))) | ||
37 : | (do ((l yokolines (cdr l)) | ||
38 : | (i 0 (1+ i)) | ||
39 : | (directparents nil nil) | ||
40 : | (parents nil nil)) | ||
41 : | ((atom l) | ||
42 : | ; (prinderr (nreverse yokotree)) | ||
43 : | (setq yokotree (nreverse yokotree)) | ||
44 : | ) | ||
45 : | (do ((ll yokotree (cdr ll)) | ||
46 : | (j (1- i) (1- j))) | ||
47 : | ((atom ll) | ||
48 : | (push `(,(car l) ,parents ,directparents nil) yokotree)) | ||
49 : | (cond ((memq j parents)) | ||
50 : | ((child-of (car l) (caar ll) points) | ||
51 : | (push j directparents) | ||
52 : | (setq parents (add-parents parents (cons j (cadar ll)))))))) | ||
53 : | (do ((l yokotree (cdr l)) | ||
54 : | (directparents) | ||
55 : | (i 0 (1+ i))) | ||
56 : | ((atom l)) | ||
57 : | (setq directparents (third (car l))) | ||
58 : | (do ((ll directparents (cdr ll)) | ||
59 : | (parent nil)(brother nil)) | ||
60 : | ((atom ll)) | ||
61 : | (setq parent (nth (car ll) yokotree)) | ||
62 : | (setq brother (cdddr parent)) | ||
63 : | (rplaca brother (cons i (car brother))))) | ||
64 : | (do ((l yokotree (cdr l)) | ||
65 : | (i 0 (1+ i)) | ||
66 : | (directparents nil)(directchildren nil)) | ||
67 : | ((atom l)) | ||
68 : | (setq directparents (third (car l))) | ||
69 : | (cond ((null directparents)(push (list nil i) spaces)) | ||
70 : | (t | ||
71 : | (do ((ll directparents (cdr ll)) | ||
72 : | (parent nil)(pair nil)) | ||
73 : | ((atom ll)) | ||
74 : | (setq pair (list (car ll) i)) | ||
75 : | (cond ((member pair spaces)) | ||
76 : | (t (push pair spaces)))))) | ||
77 : | (setq directchildren (fourth (car l))) | ||
78 : | (cond ((null directchildren)(push (list i nil) spaces)) | ||
79 : | (t | ||
80 : | (do ((ll directchildren (cdr ll)) | ||
81 : | (pair nil)) | ||
82 : | ((atom ll)) | ||
83 : | (setq pair (list i (car ll))) | ||
84 : | (cond ((member pair spaces)) | ||
85 : | (t (push pair spaces))))))) | ||
86 : | (or spaces (setq spaces (ncons (list nil nil)))) | ||
87 : | ; (prinderr spaces) | ||
88 : | (do ((l otherlines (cdr l))(other nil) | ||
89 : | (space)(upcon)(downcon)(upcon-type)(downcon-type)) | ||
90 : | ((atom l)) | ||
91 : | (setq other (car l)) | ||
92 : | (do ((ll spaces (cdr ll))) | ||
93 : | ((atom ll)) | ||
94 : | (setq space (car ll)) | ||
95 : | (cond ((car space) | ||
96 : | (setq upcon (yoko-other (car (nth (car space) yokotree)) | ||
97 : | (car l) | ||
98 : | points))) | ||
99 : | (t (setq upcon nil))) | ||
100 : | (cond ((cadr space) | ||
101 : | (setq downcon (yoko-other (car (nth (cadr space) yokotree)) | ||
102 : | (car l) | ||
103 : | points))) | ||
104 : | (t (setq downcon nil))) | ||
105 : | ; (prinderr (list upcon downcon)) | ||
106 : | (cond ((and (or (memq upcon upcon-type) (null (car space))) | ||
107 : | (or (memq downcon downcon-type) (null (cadr space)))) | ||
108 : | (rplacd (cdr space) | ||
109 : | (cons (list upcon downcon (car l)) (cddr space))))))) | ||
110 : | (do ((l spaces (cdr l)) | ||
111 : | (pattern)(match-pattern)(default-assumedsize)(assumedsize)(ydiff) | ||
112 : | (ret nil)) | ||
113 : | ((atom l) | ||
114 : | ; (prinderr ret) | ||
115 : | (setq assumed ret) | ||
116 : | ) | ||
117 : | (setq pattern (cddar l)) | ||
118 : | (setq match-pattern (match-pattern pattern)) | ||
119 : | ; (prinderr (list pattern match-pattern)) | ||
120 : | (cond ((null match-pattern) | ||
121 : | ; (prinderr `(unmatched . ,pattern)) | ||
122 : | (setq assumedsize default-assumedsize)) | ||
123 : | (t | ||
124 : | (setq assumedsize (cdr match-pattern)))) | ||
125 : | (cond ((and (caar l)(cadar l)) | ||
126 : | ; (prinderr (yokospace (caar l)(cadar l) yokotree points)) | ||
127 : | (setq ydiff (yokospace (caar l)(cadar l) yokotree points)) | ||
128 : | (push | ||
129 : | (cons ydiff assumedsize) | ||
130 : | ret)) | ||
131 : | ((and (caar l) pattern match-pattern) | ||
132 : | ; (prinderr (ydiff pattern points)) | ||
133 : | (setq ydiff | ||
134 : | (difference (cdr (ydiff pattern points)) | ||
135 : | (yokomeany (caar l) yokotree points))) | ||
136 : | (push | ||
137 : | (cons ydiff assumedsize) ret)) | ||
138 : | ((and (cadar l) pattern match-pattern) | ||
139 : | (setq ydiff | ||
140 : | (difference (yokomeany (cadar l) yokotree points) | ||
141 : | (car (ydiff pattern points)))) | ||
142 : | (push | ||
143 : | (cons ydiff assumedsize) ret)) | ||
144 : | ((and pattern match-pattern) | ||
145 : | (setq ydiff | ||
146 : | (difference (cdr (ydiff pattern points)) | ||
147 : | (car (ydiff pattern points)))) | ||
148 : | (push | ||
149 : | (cons ydiff assumedsize) ret)))) | ||
150 : | ; (prinderr assumed) | ||
151 : | (and assumed | ||
152 : | (do ((l assumed (cdr l)) | ||
153 : | (sum0 0) | ||
154 : | (sum1 0)) | ||
155 : | ((atom l)(quotient sum1 sum0)) | ||
156 : | (setq sum0 (plus sum0 (cdar l))) | ||
157 : | (setq sum1 (plus sum1 (caar l))))) | ||
158 : | )) | ||
159 : | ; | ||
160 : | ; | ||
161 : | ; | ||
162 : | ; | ||
163 : | ; | ||
164 : | ; | ||
165 : | (defun simplify-prim (prim) | ||
166 : | (lets ((points (car prim)) | ||
167 : | (lines (cadr prim)) | ||
168 : | (link)(p0)(p1)(y)(y2)(ydiff) | ||
169 : | (alist (cddr prim))) | ||
170 : | (do ((l lines (cdr l)) | ||
171 : | (ret nil)) | ||
172 : | ((atom l)`(,points ,(nreverse ret) .,alist)) | ||
173 : | (cond ((eq (caar l) 'tate) | ||
174 : | (setq link (assq 'link (cddar l))) | ||
175 : | (setq p0 (car (cadar l)) p1 (cadr (cadar l))) | ||
176 : | (setq y (cadr (nth p1 points))) | ||
177 : | (setq y2 (cadr (nth p0 points))) | ||
178 : | (setq ydiff (difference y y2)) | ||
179 : | (cond (link | ||
180 : | (do ((ll (cdr link) (cdr ll))) | ||
181 : | ((atom ll) | ||
182 : | (push (car l) ret)) | ||
183 : | (setq y2 (cadr (nth (car ll) points))) | ||
184 : | (cond ((greaterp (times simple-thresh ydiff) | ||
185 : | (abs (difference y y2))) | ||
186 : | (push `(tate (,p0 ,(car ll)) | ||
187 : | ,(remq (car ll) link)) | ||
188 : | ret) | ||
189 : | (exit))))) | ||
190 : | (t | ||
191 : | (push (car l) ret)))) | ||
192 : | (t (push (car l) ret)))))) | ||
193 : | ; | ||
194 : | ; | ||
195 : | ; | ||
196 : | (defun yokospace (num1 num2 yokotree points) | ||
197 : | (lets ((yoko1 (nth num1 yokotree)) | ||
198 : | (points1 (cadar yoko1)) | ||
199 : | (p0 (nth (car points1) points)) | ||
200 : | (p1 (nth (cadr points1) points)) | ||
201 : | (yoko2 (nth num2 yokotree)) | ||
202 : | (points2 (cadar yoko2)) | ||
203 : | (p2 (nth (car points2) points)) | ||
204 : | (p3 (nth (cadr points2) points))) | ||
205 : | ; (prinderr (list p0 p1 p2 p3)) | ||
206 : | (quotient (plus (cadr p2)(cadr p3)(minus (cadr p0))(minus (cadr p1))) | ||
207 : | 2))) | ||
208 : | ; | ||
209 : | ; | ||
210 : | ; | ||
211 : | (defun yokomeany (num yokotree points) | ||
212 : | (lets ((yoko1 (nth num yokotree)) | ||
213 : | (points1 (cadar yoko1)) | ||
214 : | (p0 (nth (car points1) points)) | ||
215 : | (p1 (nth (cadr points1) points))) | ||
216 : | (quotient (plus (cadr p0)(cadr p1)) 2))) | ||
217 : | ; | ||
218 : | ; | ||
219 : | ; | ||
220 : | (defun ydiff (pattern points) | ||
221 : | (do ((l pattern (cdr l)) | ||
222 : | (miny nil) | ||
223 : | (point)(y) | ||
224 : | (maxy nil)) | ||
225 : | ((atom l)(cons miny maxy)) | ||
226 : | (do ((ll (cadr (caddar l))(cdr ll))) | ||
227 : | ((atom ll)) | ||
228 : | (setq point (nth (car ll) points)) | ||
229 : | (setq y (cadr point)) | ||
230 : | (cond ((or (null miny)(greaterp miny y)) | ||
231 : | (setq miny y)) | ||
232 : | ((or (null maxy)(greaterp y maxy)) | ||
233 : | (setq maxy y)))))) | ||
234 : | ; | ||
235 : | ; connection | ||
236 : | ; | ||
237 : | (setq upcon-type | ||
238 : | '(otherstart yokoend yokostart leftupper rightupper cross down)) | ||
239 : | (setq downcon-type | ||
240 : | '(otherend yokoend yokostart leftdown rightdown cross up)) | ||
241 : | ; | ||
242 : | ; child-of | ||
243 : | ; | ||
244 : | ktanaka | 1.5 | (declare (eps) special) |
245 : | ktanaka | 1.1 | (setq eps 10^-5) |
246 : | (defun child-of (line0 line1 points) | ||
247 : | (lets ((x00 (car (nth (caadr line0) points))) | ||
248 : | (x01 (car (nth (cadadr line0) points))) | ||
249 : | (x10 (car (nth (caadr line1) points))) | ||
250 : | (x11 (car (nth (cadadr line1) points)))) | ||
251 : | ; (prinderr `((,(nth (caadr line0) points) ,(nth (cadadr line0) points)) | ||
252 : | ; (,(nth (caadr line1) points) ,(nth (cadadr line1) points)))) | ||
253 : | (cond ((lessp x01 (plus x10 eps))nil) | ||
254 : | ((lessp x11 (plus x00 eps))nil) | ||
255 : | (t)))) | ||
256 : | ; | ||
257 : | ; add-parents | ||
258 : | ; | ||
259 : | (defun add-parents (orig add) | ||
260 : | (do ((l add (cdr l)) | ||
261 : | (ret orig)) | ||
262 : | ((atom l)ret) | ||
263 : | (cond ((memq (car l) orig))(t(push (car l) ret))))) | ||
264 : | ; | ||
265 : | ; yoko-other | ||
266 : | ; | ||
267 : | (defun yoko-other (yoko other points) | ||
268 : | ; (prinderr (list yoko other)) | ||
269 : | (lets ((yokopoints (cadr yoko)) | ||
270 : | (yokostart (car yokopoints)) | ||
271 : | (yokoend (cadr yokopoints)) | ||
272 : | (yokoalist (cddr yoko)) | ||
273 : | (yokolink (assq 'link yokoalist)) | ||
274 : | (yokolink (and yokolink (cdr yokolink))) | ||
275 : | (otherpoints (cadr other)) | ||
276 : | (otherstart (car otherpoints)) | ||
277 : | (otherend (car (last otherpoints))) | ||
278 : | (otheralist (cddr other)) | ||
279 : | (otherlink (assq 'link otheralist)) | ||
280 : | (otherlink (and otherlink (cdr otherlink)))) | ||
281 : | ; (print (list yokolink otherlink yokostart yokoend otherstart otherend)) | ||
282 : | (cond ((eq yokostart otherstart) | ||
283 : | 'leftupper) | ||
284 : | ((eq yokostart otherend) | ||
285 : | 'leftdown) | ||
286 : | ((eq yokoend otherstart) | ||
287 : | 'rightupper) | ||
288 : | ((eq yokoend otherend) | ||
289 : | 'rightdown) | ||
290 : | ((memq yokostart otherlink) | ||
291 : | 'yokostart) | ||
292 : | ((memq yokoend otherlink) | ||
293 : | 'yokoend) | ||
294 : | ((memq otherstart yokolink) | ||
295 : | 'otherstart) | ||
296 : | ((memq otherend yokolink) | ||
297 : | 'otherend) | ||
298 : | (t | ||
299 : | (lets ((p0 (nth yokostart points)) | ||
300 : | (x0 (car p0))(y (cadr p0)) | ||
301 : | (p1 (nth yokoend points)) | ||
302 : | (p2)(x2)(y2)(p3)(x3)(y3) | ||
303 : | (x1 (car p1))) | ||
304 : | (do ((l otherpoints (cdr l)) | ||
305 : | (state nil)) | ||
306 : | ((atom (cdr l)) | ||
307 : | (cond (state))) | ||
308 : | (setq p2 (nth (car l) points)) | ||
309 : | (setq x2 (car p2) y2 (cadr p2)) | ||
310 : | (setq p3 (nth (cadr l) points)) | ||
311 : | (setq x3 (car p3) y3 (cadr p3)) | ||
312 : | (cond ((and (lessp x0 x2 x1) | ||
313 : | (lessp x0 x3 x1) | ||
314 : | (or (lessp y2 y y3) | ||
315 : | (lessp y3 y y2))) | ||
316 : | (exit 'cross)) | ||
317 : | ((and (or (lessp x0 x3 x1)(lessp x0 x2 x1)) | ||
318 : | (lessp y3 y)) | ||
319 : | (setq state 'up)) | ||
320 : | ((and (or (lessp x0 x3 x1)(lessp x0 x2 x1)) | ||
321 : | (lessp y y2)) | ||
322 : | (setq state 'down))))))))) | ||
323 : | ; | ||
324 : | ; | ||
325 : | ; | ||
326 : | (declare (partorder partheight) special) | ||
327 : | (setq partorder '(tate magaritate tatehane tsukurihane hidari ten migi migiue kokoro)) | ||
328 : | ; | ||
329 : | ; | ||
330 : | ; | ||
331 : | (defun partsort (all) | ||
332 : | (do ((l all (cdr l)) | ||
333 : | (ret nil)) | ||
334 : | ((atom l)(nreverse ret)) | ||
335 : | (push (cons (sort (caar l) | ||
336 : | (function (lambda (x y) | ||
337 : | (greaterp (length (memq (car x) partorder)) | ||
338 : | (length (memq (car y) partorder)))))) | ||
339 : | (cdar l)) | ||
340 : | ret))) | ||
341 : | ; | ||
342 : | ; | ||
343 : | (defun patternsort (l) | ||
344 : | (sort l | ||
345 : | (function (lambda (x y) | ||
346 : | (greaterp (length (memq (caaddr x) partorder)) | ||
347 : | (length (memq (caaddr y) partorder))))))) | ||
348 : | ; | ||
349 : | ; match-pattern | ||
350 : | ; | ||
351 : | (defun match-pattern (pattern) | ||
352 : | (lets ((sorted (patternsort pattern))) | ||
353 : | ; (prinderr pattern) | ||
354 : | (do ((l partheight (cdr l)) | ||
355 : | (flag)(matchp)) | ||
356 : | ((atom l)) | ||
357 : | (cond ((eq (length pattern)(length (caar l))) | ||
358 : | (setq flag | ||
359 : | (do ((ll (caar l) (cdr ll)) | ||
360 : | (pp sorted (cdr pp))) | ||
361 : | ((atom ll)t) | ||
362 : | ; (prinderr (list (caar ll)(car (caddar pp)))) | ||
363 : | (cond ((neq (caar ll)(car (caddar pp)))(exit nil))))) | ||
364 : | ; (prinderr flag) | ||
365 : | (and flag | ||
366 : | (setq matchp (match-pattern1 sorted (car l))) | ||
367 : | (exit matchp))))))) | ||
368 : | ; | ||
369 : | ; | ||
370 : | ; | ||
371 : | (defun match-pattern1 (src pattern) | ||
372 : | (lets ((treesrc (treesrc src)) | ||
373 : | (treepattern (treepattern (car pattern)))) | ||
374 : | ; (break) | ||
375 : | ; (prinderr (list "match-pattern-1" treesrc treepattern src pattern)) | ||
376 : | (do ((ll treesrc (cdr ll)) | ||
377 : | (pp treepattern (cdr pp))) | ||
378 : | ((atom ll)pattern) | ||
379 : | (or (match-pattern2 (car ll)(car pp)) (exit nil))))) | ||
380 : | ; | ||
381 : | ; | ||
382 : | ; | ||
383 : | (defun treesrc (src) | ||
384 : | (do ((l src (cdr l)) | ||
385 : | (lasttype nil) | ||
386 : | (ret nil) | ||
387 : | (type) | ||
388 : | (eqtypes nil)) | ||
389 : | ((atom l) | ||
390 : | (push eqtypes ret) | ||
391 : | (nreverse ret)) | ||
392 : | (setq type (caaddr (car l))) | ||
393 : | (cond ((eq type lasttype) | ||
394 : | (push (car l) eqtypes)) | ||
395 : | (t | ||
396 : | (and eqtypes (push eqtypes ret)) | ||
397 : | (setq eqtypes (ncons (car l))) | ||
398 : | (setq lasttype type))))) | ||
399 : | ; | ||
400 : | ; | ||
401 : | ; | ||
402 : | (defun treepattern (src) | ||
403 : | (do ((l src (cdr l)) | ||
404 : | (lasttype nil) | ||
405 : | (ret nil) | ||
406 : | (type) | ||
407 : | (eqtypes nil)) | ||
408 : | ((atom l) | ||
409 : | (push eqtypes ret) | ||
410 : | (nreverse ret)) | ||
411 : | (setq type (caar l)) | ||
412 : | (cond ((eq type lasttype) | ||
413 : | (push (car l) eqtypes)) | ||
414 : | (t | ||
415 : | (and eqtypes (push eqtypes ret)) | ||
416 : | (setq eqtypes nil) | ||
417 : | (push (car l) eqtypes) | ||
418 : | (setq lasttype type))))) | ||
419 : | ; | ||
420 : | ; | ||
421 : | ; | ||
422 : | (defun match-pattern2 (src pattern) | ||
423 : | ; (prinderr (list "match-pattern2" src pattern)) | ||
424 : | (cond ((null pattern)t) | ||
425 : | (t | ||
426 : | (do ((l pattern (cdr l))) | ||
427 : | ((atom l)nil) | ||
428 : | (and (match-pattern3 (car src) (car l)) | ||
429 : | (match-pattern2 (cdr src) (remq (car l) pattern)) | ||
430 : | (exit t)))))) | ||
431 : | ; | ||
432 : | ; | ||
433 : | ; | ||
434 : | (defun match-pattern3 (src pattern) | ||
435 : | (lets ((spat1 (car src)) | ||
436 : | (spat2 (cadr src)) | ||
437 : | (pat1 (cadr pattern)) | ||
438 : | (pat2 (caddr pattern))) | ||
439 : | ; (prinderr (list "match-pattern3" spat1 spat2 pat1 pat2)) | ||
440 : | (and (or (eq '* pat1) | ||
441 : | (eq spat1 pat1) | ||
442 : | (memq spat1 pat1)) | ||
443 : | (or (eq '* pat2) | ||
444 : | (eq spat2 pat2) | ||
445 : | (memq spat2 pat2))))) | ||
446 : | ; | ||
447 : | ; | ||
448 : | ; | ||
449 : | (setq default-assumedsize 0.7) | ||
450 : | ; | ||
451 : | ; | ||
452 : | |||
453 : | (setq partheight | ||
454 : | (partsort | ||
455 : | '((nil . 0.7) ; 二 | ||
456 : | (((tate leftupper leftdown) | ||
457 : | (tate rightupper rightdown)) | ||
458 : | . 1.0) ; 口 | ||
459 : | (((tate (yokostart leftdown) up) | ||
460 : | (tate (yokoend rightdown) up)) | ||
461 : | . 0.78) ; 旦 | ||
462 : | (((tate otherstart otherend)) | ||
463 : | . 0.86) ; 工 | ||
464 : | (((tate otherstart cross)) | ||
465 : | . 0.70) ; 干 | ||
466 : | (((tate cross otherend)) | ||
467 : | . 0.73) ; 土 | ||
468 : | (((tate leftupper yokostart) | ||
469 : | (tate rightupper yokoend)) | ||
470 : | . 0.70) ; 日 | ||
471 : | (((tate yokostart yokostart) | ||
472 : | (tate yokoend yokoend)) | ||
473 : | . 0.58) ; 目 | ||
474 : | (((tate yokostart leftdown) | ||
475 : | (tate yokoend rightdown)) | ||
476 : | . 0.72) ; 日 | ||
477 : | (((tate leftupper yokostart) | ||
478 : | (tate otherstart cross) | ||
479 : | (tate rightupper yokoend)) | ||
480 : | . 0.95) ; 田 | ||
481 : | (((tate yokostart leftdown) | ||
482 : | (tate cross (cross otherend)) | ||
483 : | (tate yokoend rightdown)) | ||
484 : | . 0.95) ; 田 | ||
485 : | (((tate leftupper yokostart) | ||
486 : | (kokoro otherstart cross) | ||
487 : | (tate rightupper yokoend)) | ||
488 : | . 0.95) ; 電 | ||
489 : | (((tate yokostart leftdown) | ||
490 : | (kokoro cross (cross otherend)) | ||
491 : | (tate yokoend rightdown)) | ||
492 : | . 0.95) ; 電 | ||
493 : | (((tate * nil)) | ||
494 : | . 1.4) ; 十 | ||
495 : | (((tatehane * nil)) | ||
496 : | . 1.4) ; 十 | ||
497 : | (((tate * *)) | ||
498 : | . 0.70) | ||
499 : | (((tate * *)(tate * *)) | ||
500 : | . 0.75) | ||
501 : | (((tate * *)(tate * *)(tate * *)) | ||
502 : | . 0.80) | ||
503 : | (((tate * *)(tate * *)(tate * *)(tate * *)) | ||
504 : | . 0.85) | ||
505 : | (((hidari * *)(migiue * *)(ten * *)) | ||
506 : | . 1.11) ; ム | ||
507 : | (((hidari * *)(ten * *)(hidari * *)(migiue * *)(ten * *)) | ||
508 : | . 1.63) ; 糸 | ||
509 : | (((hidari rightupper nil)(migi (cross down otherstart) nil)) | ||
510 : | . 1.90) ; 又 | ||
511 : | (((hidari rightupper *)(hidari yokostart *)(migi (down otherstart) *)) | ||
512 : | . 2.28) ; 各 | ||
513 : | (((kokoro * *)(ten * *)(ten * *)(ten * *)) | ||
514 : | . 2.14) ; 心 | ||
515 : | (((tate * (nil otherend))) | ||
516 : | . 0.73) ; 京 | ||
517 : | (((tate * (nil otherend)) | ||
518 : | (ten * *)(hidari * *)(ten * yokostart)) | ||
519 : | . 0.75) ; 堂 | ||
520 : | (((tate (cross otherstart) *) | ||
521 : | (hidari (cross otherstart) *) | ||
522 : | (migi (cross otherstart) *)) | ||
523 : | . 1.85) ; 木 | ||
524 : | (((tate (cross otherstart) *) | ||
525 : | (hidari (cross otherstart down) *) | ||
526 : | (ten (cross otherstart down) *)) | ||
527 : | . 1.85) ; 木へん | ||
528 : | (((tatehane otherstart *)(ten * *)(ten * *)) | ||
529 : | . 1.86) ; 小 | ||
530 : | (((tatehane otherstart *)(ten * *)) | ||
531 : | . 1.80) ; 寸 | ||
532 : | (((hidari otherstart *)(kokoro otherstart *)) | ||
533 : | . 1.51) ; 見 | ||
534 : | (((hidari (cross otherstart) nil)(migi (down otherstart) nil)) | ||
535 : | . 1.85) ; 大 | ||
536 : | (((magaritate (cross otherstart) nil)(hidari otherstart nil)(ten * *)) | ||
537 : | . 1.73) ; 女 | ||
538 : | (((hidari (otherstart down) *) | ||
539 : | (tate * *)(migiue * *)(hidari * *)(migi * *)) | ||
540 : | . 2.40) ; 衣 | ||
541 : | (((tate * *)(migiue * *)(hidari * *)(migi * *)) | ||
542 : | . 2.40) ; 畏 | ||
543 : | (((hidari yokostart *) | ||
544 : | (hidari otherstart *) | ||
545 : | (hidari otherstart *) | ||
546 : | (tsukurihane rightupper *)) | ||
547 : | . 2.20) ; 易 | ||
548 : | (((hidari * nil)(kokoro * nil)) | ||
549 : | . 1.70) | ||
550 : | (((hidari down (otherend up))(ten down (otherend up))) | ||
551 : | . 1.2) | ||
552 : | ))) | ||
553 : |
ktanaka Powered by ViewCVS 1.0-dev |
ViewCVS and CVS Help |