Revision: 1.2 - (view) (download)
1 : | ktanaka | 1.1 | ; declaration for compile |
2 : | (declare (revtable terminal-output) special) | ||
3 : | |||
4 : | ; sectionの形 | ||
5 : | ; nil 制限なし | ||
6 : | ; ((nil . 1.0)(2.0 . nil))のたぐい(sorted) | ||
7 : | |||
8 : | ; sの形 | ||
9 : | ; 1.0, t(s>0のどんなsでもよい), nil(どんなsでも駄目) | ||
10 : | (defun section2s (section) | ||
11 : | (cond (section | ||
12 : | (do ((l section (cdr l))) | ||
13 : | ((atom l)t) | ||
14 : | (cond ((eq (cdar l) 't) | ||
15 : | (exit (rm-eq (caar l)))) | ||
16 : | ((and (cdar l)(plusp (rm-eq (cdar l)))) | ||
17 : | (exit (rm-eq (caar l))))))) | ||
18 : | (t))) ; sectionがnilならtを返す | ||
19 : | ; | ||
20 : | (defun rm-eq (a) | ||
21 : | (cond ((consp a) (cdr a)) | ||
22 : | (a))) | ||
23 : | ; | ||
24 : | (defun eqsym (a) | ||
25 : | (and (consp a)(car a))) | ||
26 : | ; | ||
27 : | ; orsection | ||
28 : | ; | ||
29 : | (defun lt (a b) | ||
30 : | (cond ((null a) t) | ||
31 : | ((null b) nil) | ||
32 : | ((eq a 't) nil) | ||
33 : | ((eq b 't) t) | ||
34 : | (t | ||
35 : | (lets ((aa (rm-eq a))(bb (rm-eq b))) | ||
36 : | (cond ((lessp aa bb) t) | ||
37 : | ((greaterp aa bb) nil) | ||
38 : | ((eq '> (eqsym aa)) nil) | ||
39 : | ((eq '> (eqsym bb)) t) | ||
40 : | ((eq '< (eqsym aa)) t) | ||
41 : | ((eq '< (eqsym bb)) nil)))))) | ||
42 : | |||
43 : | (defun gt (a b) | ||
44 : | (cond ((null a) nil) | ||
45 : | ((null b) t) | ||
46 : | ((eq a 't) t) | ||
47 : | ((eq b 't) nil) | ||
48 : | (t | ||
49 : | (lets ((aa (rm-eq a))(bb (rm-eq b))) | ||
50 : | (cond ((lessp aa bb) nil) | ||
51 : | ((greaterp aa bb) t) | ||
52 : | ((eq '> (eqsym aa)) t) | ||
53 : | ((eq '> (eqsym bb)) nil) | ||
54 : | ((eq '< (eqsym aa)) nil) | ||
55 : | ((eq '< (eqsym bb)) t) | ||
56 : | (t)))))) | ||
57 : | |||
58 : | (defun orsection (s1 s2) | ||
59 : | ; (prind (list "orsection" s1 s2)) | ||
60 : | (cond | ||
61 : | ((null s1) s2) | ||
62 : | ((null s2) s1) | ||
63 : | (t | ||
64 : | (lets ((ret) | ||
65 : | (cursec (cond ((gt (caar s2)(caar s1)) | ||
66 : | (prog1 (car s1) (setq s1 (cdr s1)))) | ||
67 : | (t (prog1 (car s2)(setq s2 (cdr s2))))))) | ||
68 : | (loop | ||
69 : | ; (prind (list s1 s2)) | ||
70 : | (cond ((and s1 (gt (cdr cursec)(caar s1))) | ||
71 : | (cond ((gt (cdr cursec)(cdar s1))) | ||
72 : | (t (setq cursec (cons (car cursec)(cdar s1))))) | ||
73 : | (setq s1 (cdr s1))) | ||
74 : | ((and s2 (gt (cdr cursec)(caar s2))) | ||
75 : | (cond ((gt (cdr cursec)(cdar s2))) | ||
76 : | (t (setq cursec (cons (car cursec)(cdar s2))))) | ||
77 : | (setq s2 (cdr s2))) | ||
78 : | (t | ||
79 : | (push cursec ret) | ||
80 : | (cond ((and s1 s2) | ||
81 : | (setq cursec (cond ((gt (caar s2)(caar s1)) | ||
82 : | (prog1 (car s1) (setq s1 (cdr s1)))) | ||
83 : | (t (prog1 (car s2)(setq s2 (cdr s2))))))) | ||
84 : | (s1 | ||
85 : | (setq cursec (car s1)) | ||
86 : | (setq s1 (cdr s1))) | ||
87 : | (s2 | ||
88 : | (setq cursec (car s2)) | ||
89 : | (setq s2 (cdr s2))) | ||
90 : | (t (exit (nreverse ret))))))))))) | ||
91 : | ; | ||
92 : | ; andsection | ||
93 : | ; | ||
94 : | (defun andsection (s1 s2) | ||
95 : | ; (prind (list "andsection" s1 s2)) | ||
96 : | (lets ((ret)) | ||
97 : | (loop | ||
98 : | (cond ((and s1 s2) | ||
99 : | (cond ((lt (caar s2)(caar s1)) | ||
100 : | (cond ((gt (caar s1)(cdar s2)) | ||
101 : | (setq s2 (cdr s2))) | ||
102 : | (t | ||
103 : | (cond ((gt (cdar s1)(cdar s2)) | ||
104 : | (push `(,(caar s1) .,(cdar s2)) ret) | ||
105 : | (setq s2 (cdr s2))) | ||
106 : | (t | ||
107 : | (push (car s1) ret) | ||
108 : | (setq s1 (cdr s1))))))) | ||
109 : | (t | ||
110 : | (cond ((lt (cdar s1)(caar s2)) | ||
111 : | (setq s1 (cdr s1))) | ||
112 : | (t | ||
113 : | (cond ((gt (cdar s2)(cdar s1)) | ||
114 : | (push `(,(caar s2) .,(cdar s1)) ret) | ||
115 : | (setq s1 (cdr s1))) | ||
116 : | (t | ||
117 : | (push (car s2) ret) | ||
118 : | (setq s2 (cdr s2))))))))) | ||
119 : | (t (exit (nreverse ret))))))) | ||
120 : | |||
121 : | ; | ||
122 : | ; | ||
123 : | (defun revsym (val sym) | ||
124 : | (cond ((consp val)(cdr val)) | ||
125 : | ((null val)nil) | ||
126 : | ((eq val 't) t) | ||
127 : | (t `(,sym .,val)))) | ||
128 : | ; | ||
129 : | (defun notsection (section) | ||
130 : | ; (prind (list "notsection" section)) | ||
131 : | (do ((l section (cdr l)) | ||
132 : | (lastmax nil) | ||
133 : | (ret)) | ||
134 : | ((atom l) | ||
135 : | (and (neq lastmax 't)(push `(,(revsym lastmax '>) . t) ret)) | ||
136 : | (nreverse ret)) | ||
137 : | (cond ((and (null lastmax)(null (caar l)))) | ||
138 : | ((equal lastmax (caar l))) | ||
139 : | (t | ||
140 : | (push `(,(revsym lastmax '>) .,(revsym (caar l) '<)) ret))) | ||
141 : | (setq lastmax (cdar l)))) | ||
142 : | ; | ||
143 : | ; | ||
144 : | ; | ||
145 : | (setq revtable | ||
146 : | '((x00 . x10)(x01 . x11)(x02 . x12)(x03 . x13) | ||
147 : | (x10 . x00)(x11 . x01)(x12 . x02)(x13 . x03) | ||
148 : | (y00 . y10)(y01 . y11)(y02 . y12)(y03 . y13) | ||
149 : | (y10 . y00)(y11 . y01)(y12 . y02)(y13 . y03))) | ||
150 : | ; | ||
151 : | (defun xpair (p) | ||
152 : | (cons (car (cadr p))(car (car p)))) | ||
153 : | ; | ||
154 : | (defun ypair (p) | ||
155 : | (cons (cadr (cadr p))(cadr (car p)))) | ||
156 : | ; | ||
157 : | ; expを評価して(at+b)の形にする | ||
158 : | ; | ||
159 : | (defun eval-exp (exp e1 p1 e2 p2 param) | ||
160 : | (lets ((exp1)) | ||
161 : | (cond ((and (assq 'reverse param) | ||
162 : | (setq exp1 (assq exp revtable))) | ||
163 : | (setq exp (cdr exp1))) | ||
164 : | ((and (memq exp '(xlimit ylimit))(not (assq exp param))) | ||
165 : | (setq exp '(0 . 0))))) | ||
166 : | (match exp | ||
167 : | (('+ a b) | ||
168 : | (let ((l1 (eval-exp a e1 p1 e2 p2 param)) | ||
169 : | (l2 (eval-exp b e1 p1 e2 p2 param))) | ||
170 : | `(,(plus (car l1)(car l2)) .,(plus (cdr l1)(cdr l2))))) | ||
171 : | (('* a b) | ||
172 : | (let ((l1 (eval-exp a e1 p1 e2 p2 param)) | ||
173 : | (l2 (eval-exp b e1 p1 e2 p2 param))) | ||
174 : | `(,(times (car l1)(car l2)) .,(times (cdr l1)(cdr l2))))) | ||
175 : | (('- a b) | ||
176 : | (let ((l1 (eval-exp a e1 p1 e2 p2 param)) | ||
177 : | (l2 (eval-exp b e1 p1 e2 p2 param))) | ||
178 : | `(,(difference (car l1)(car l2)) .,(difference (cdr l1)(cdr l2))))) | ||
179 : | (('abs a) | ||
180 : | `(abs .,(eval-exp a e1 p1 e2 p2 param))) | ||
181 : | (('diffabs a b) | ||
182 : | (let ((l1 (eval-exp a e1 p1 e2 p2 param)) | ||
183 : | (l2 (eval-exp b e1 p1 e2 p2 param))) | ||
184 : | `(abs ,(difference (car l1)(car l2)) .,(difference (cdr l1)(cdr l2))))) | ||
185 : | (('quote a)a) | ||
186 : | ('x00 (xpair (nth (car (cadr e1)) p1))) | ||
187 : | ('x01 (xpair (nth (cadr (cadr e1)) p1))) | ||
188 : | ('x02 (xpair (nth (caddr (cadr e1)) p1))) | ||
189 : | ('x03 (xpair (nth (cadddr (cadr e1)) p1))) | ||
190 : | ('x10 (xpair (nth (car (cadr e2)) p2))) | ||
191 : | ('x11 (xpair (nth (cadr (cadr e2)) p2))) | ||
192 : | ('x12 (xpair (nth (caddr (cadr e2)) p2))) | ||
193 : | ('x13 (xpair (nth (cadddr (cadr e2)) p2))) | ||
194 : | ('y00 (ypair (nth (car (cadr e1)) p1))) | ||
195 : | ('y01 (ypair (nth (cadr (cadr e1)) p1))) | ||
196 : | ('y02 (ypair (nth (caddr (cadr e1)) p1))) | ||
197 : | ('y03 (ypair (nth (cadddr (cadr e1)) p1))) | ||
198 : | ('y10 (ypair (nth (car (cadr e2)) p2))) | ||
199 : | ('y11 (ypair (nth (cadr (cadr e2)) p2))) | ||
200 : | ('y12 (ypair (nth (caddr (cadr e2)) p2))) | ||
201 : | ('y13 (ypair (nth (cadddr (cadr e2)) p2))) | ||
202 : | (var (cond ((symbolp var) | ||
203 : | (cdr (assq var param))) | ||
204 : | (t var))))) | ||
205 : | ; | ||
206 : | ; aX+b>=0の解の区間を返す | ||
207 : | ; | ||
208 : | (defun inequal1 (a b) | ||
209 : | ; (prind (cons a b)) | ||
210 : | (cond ((zerop a) | ||
211 : | (cond ((not (minusp b)) | ||
212 : | '((nil . t))) | ||
213 : | (t nil))) | ||
214 : | ((zerop b) | ||
215 : | (cond ((not (minusp a)) | ||
216 : | '((0 . t))) | ||
217 : | (t '((nil . 0))))) | ||
218 : | ((plusp a) | ||
219 : | `((,(//$ (float b) (float (minus a))) . t))) | ||
220 : | (t | ||
221 : | `((nil .,(//$ (float b) (float (minus a)))))))) | ||
222 : | ; | ||
223 : | ; aX^2+bX+c>=0の解の区間を返す | ||
224 : | ; | ||
225 : | (defun inequal2 (a b c) | ||
226 : | (cond ((zerop a) | ||
227 : | (inequal1 b c)) | ||
228 : | (t | ||
229 : | (lets ((d (difference (times b b)(times 4 a c))) | ||
230 : | (sqrtd (and (not (minusp d))(sqrt (float d))))) | ||
231 : | (cond ((plusp a) | ||
232 : | (cond (sqrtd | ||
233 : | `((nil .,(//$ (plus sqrtd b) -2.0 (float a))) | ||
234 : | (,(//$ (difference sqrtd b) 2.0 (float a)) . t))) | ||
235 : | (t '((nil . t))))) | ||
236 : | (t | ||
237 : | (cond (sqrtd | ||
238 : | `((,(//$ (difference sqrtd b) 2.0 (float a)) | ||
239 : | .,(//$ (plus sqrtd b) -2.0 (float a))))) | ||
240 : | (t nil)))))))) | ||
241 : | ; | ||
242 : | ; ex1 >= ex2の解の区間を返す | ||
243 : | ; | ||
244 : | (defun gtsection (ex1 ex2 e1 p1 e2 p2 param) | ||
245 : | (lets ((ex1 (eval-exp ex1 e1 p1 e2 p2 param)) | ||
246 : | (ex2 (eval-exp ex2 e1 p1 e2 p2 param))) | ||
247 : | ; (prind (list ex1 ex2)) | ||
248 : | (match (cons ex1 ex2) | ||
249 : | ((('abs t1 . c1) . (t2 . c2)) | ||
250 : | ; (prind (list t1 c1 t2 c2)) | ||
251 : | (orsection | ||
252 : | (andsection | ||
253 : | (inequal1 (difference t1 t2)(difference c1 c2)) | ||
254 : | (inequal1 t1 c1)) | ||
255 : | (andsection | ||
256 : | (inequal1 (minus (plus t1 t2))(minus(plus c1 c2))) | ||
257 : | (inequal1 (minus t1) (minus c1))))) | ||
258 : | (((t1 . c1) . ('abs t2 . c2)) | ||
259 : | (orsection | ||
260 : | (andsection | ||
261 : | (inequal1 (difference t1 t2)(difference c1 c2)) | ||
262 : | (inequal1 t2 c2)) | ||
263 : | (andsection | ||
264 : | (inequal1 (plus t1 t2)(plus c1 c2)) | ||
265 : | (inequal1 (minus t2) (minus c2))))) | ||
266 : | (((t1 . c1) . (t2 . c2)) | ||
267 : | (inequal1 (difference t1 t2)(difference c1 c2))) | ||
268 : | (dummy | ||
269 : | (print "Not supported Such expression" terminal-output) | ||
270 : | (print (cons ex1 ex2) terminal-output))))) | ||
271 : | ; | ||
272 : | ; | ||
273 : | ; | ||
274 : | (defun limit-section2 (e1 p1 e2 p2 param def) | ||
275 : | (selectq (car def) | ||
276 : | (or | ||
277 : | (do ((l (cdr def)(cdr l)) | ||
278 : | (ret)) | ||
279 : | ((atom l)ret) | ||
280 : | (setq ret | ||
281 : | (orsection ret (limit-section2 e1 p1 e2 p2 param(car l)))))) | ||
282 : | (and | ||
283 : | (do ((l (cdr def)(cdr l)) | ||
284 : | (ret '((nil . t)))) | ||
285 : | ((atom l)ret) | ||
286 : | (setq ret (andsection | ||
287 : | ret (limit-section2 e1 p1 e2 p2 param (car l)))))) | ||
288 : | (>= | ||
289 : | (do ((l (cddr def)(cdr l)) | ||
290 : | (ret (gtsection (cadr def)(caddr def) e1 p1 e2 p2 param))) | ||
291 : | ((atom (cdr l))ret) | ||
292 : | (setq ret (andsection | ||
293 : | ret (gtsection (car l)(cadr l) e1 p1 e2 p2 param))))) | ||
294 : | (<= | ||
295 : | (do ((l (cddr def)(cdr l)) | ||
296 : | (ret (gtsection (caddr def)(cadr def) e1 p1 e2 p2 param))) | ||
297 : | ((atom (cdr l))ret) | ||
298 : | (setq ret (andsection | ||
299 : | ret (gtsection (cadr l)(car l) e1 p1 e2 p2 param))))) | ||
300 : | |||
301 : | (prind `((,(car e1) | ||
302 : | .,(mapcar (cadr e1)#'(lambda (x) (nth x p1)))) | ||
303 : | (,(car e2) | ||
304 : | .,(mapcar (cadr e2)#'(lambda (x) (nth x p2)))))) | ||
305 : | (print (limit-section2 e1 p1 e2 p2 param (cadr def)))))) | ||
306 : | ; | ||
307 : | ; | ||
308 : | ; | ||
309 : | (defun limit-section1 (e1 p1 e2 p2 param def) | ||
310 : | (let ((sec1 (limit-section2 e1 p1 e2 p2 param (car def))) | ||
311 : | (sec2 (limit-section2 e1 p1 e2 p2 param (cadr def)))) | ||
312 : | ; (prind (list e1 e2 sec1 sec2)) | ||
313 : | (andsection sec1 (notsection sec2)))) | ||
314 : | ; | ||
315 : | ; | ||
316 : | ; | ||
317 : | (defun limit-section (e1 p1 e2 p2 param def) | ||
318 : | (do ((l def (cdr l)) | ||
319 : | (ret1) | ||
320 : | (ret)) | ||
321 : | ((atom l)ret) | ||
322 : | (setq ret1 (limit-section1 e1 p1 e2 p2 param (car l))) | ||
323 : | (cond (ret (setq ret (orsection ret ret1))) | ||
324 : | (t (setq ret ret1))))) | ||
325 : | ; | ||
326 : | ; revconv 逆変換を求める | ||
327 : | ; | ||
328 : | (defun revconv (conv) | ||
329 : | (lets ((rmat (rmat conv)) | ||
330 : | (ret (vector 6 rmat))) | ||
331 : | (vset ret 4 (minus (plus (times (vref conv 4)(vref rmat 0)) | ||
332 : | (times (vref conv 5)(vref rmat 1))))) | ||
333 : | (vset ret 5 (minus (plus (times (vref conv 4)(vref rmat 2)) | ||
334 : | (times (vref conv 5)(vref rmat 3))))) | ||
335 : | ret)) | ||
336 : | ; | ||
337 : | ; | ||
338 : | (declare (limit_margin delta) special) | ||
339 : | (setq delta 0.0) | ||
340 : | ; | ||
341 : | (defun extendline (a b s) | ||
342 : | (plus2 a (times2 (//$ s 2.0)(diff2 a b)))) | ||
343 : | ; | ||
344 : | (defun crosst (a b c) | ||
345 : | (lets ( | ||
346 : | ; (a (extendline a b delta)) | ||
347 : | ; (b (extendline b a (//$ delta (+$ 1.0 delta)))) | ||
348 : | (p (car c)) | ||
349 : | (q (cadr c)) | ||
350 : | (diff (diff2 b a)) | ||
351 : | (mat (vector 4 (list (car q)(cadr q)(car diff)(cadr diff))))) | ||
352 : | ; (prind (list a b c)) | ||
353 : | (cond ((zerop (difference (times (car q)(cadr diff)) | ||
354 : | (times (cadr q)(car diff)))) | ||
355 : | nil) | ||
356 : | (t | ||
357 : | (lets ((rmat (rmat mat)) | ||
358 : | (rconv (vector 6 rmat)) | ||
359 : | (bp (diff2 b p)) | ||
360 : | (ts)) | ||
361 : | (vset rconv 4 0) | ||
362 : | (vset rconv 5 0) | ||
363 : | (setq ts (affine bp rconv)) | ||
364 : | ; (prind (list bp mat rconv ts)) | ||
365 : | ; (prind ts) | ||
366 : | (cond ((<=$ (-$ delta) (cadr ts) (+$ 1.0 delta)) | ||
367 : | `(,(car ts))) | ||
368 : | (t nil))))))) | ||
369 : | ; | ||
370 : | ; aX^2+bX+c=0の解のリスト | ||
371 : | ; | ||
372 : | (defun equation2 (a b c) | ||
373 : | (cond ((zerop a) | ||
374 : | `(,(//$ (float b)(-$ (float c))))) | ||
375 : | (t | ||
376 : | (lets ((d (difference (times b b)(times 4 a c))) | ||
377 : | (sqrtd (and (not (minusp d))(sqrt (float d))))) | ||
378 : | (cond (sqrtd | ||
379 : | `(,(//$ (plus sqrtd b) -2.0 (float a)) | ||
380 : | ,(//$ (difference sqrtd b) 2.0 (float a)))) | ||
381 : | (t nil)))))) | ||
382 : | ; | ||
383 : | ; equation_ts | ||
384 : | ; | ||
385 : | (defun epsp(x) | ||
386 : | (lessp (abs x) 1.0^-7)) | ||
387 : | ; | ||
388 : | (defun equation_ts (a1 b1 c1 d1 a2 b2 c2 d2) | ||
389 : | (lets ((ab (difference (times a1 b2)(times a2 b1))) | ||
390 : | (ac (difference (times a2 c1)(times a1 c2))) | ||
391 : | (ad (difference (times a1 d2)(times a2 d1))) | ||
392 : | (bc (difference (times c1 b2)(times c2 b1))) | ||
393 : | (bd (difference (times d2 b1)(times d1 b2))) | ||
394 : | (cd (difference (times c1 d2)(times c2 d1))) | ||
395 : | (res)) | ||
396 : | ; (break) | ||
397 : | (cond ((and (epsp a1)(epsp a2)) | ||
398 : | (cond ((epsp bc) | ||
399 : | nil) | ||
400 : | (t | ||
401 : | `((,(//$ (float cd)(-$ (float bc))) | ||
402 : | .,(//$ (float bd)(float bc))))))) | ||
403 : | ((and (epsp ac)(epsp ab)) | ||
404 : | nil) | ||
405 : | ((epsp ac) | ||
406 : | (setq res (//$ (float ad)(-$ (float ab)))) | ||
407 : | (cond ((not (epsp (plus c1 (times a1 res)))) | ||
408 : | `((,res .,(//$ (float (minus (plus d1 (times b1 res)))) | ||
409 : | (float (plus c1 (times a1 res))))))) | ||
410 : | ((not (epsp (plus c2 (times a2 res)))) | ||
411 : | `((,res .,(//$ (float (minus (plus d2 (times b2 res)))) | ||
412 : | (float (plus c2 (times a2 res))))))) | ||
413 : | (t nil))) | ||
414 : | ((epsp ab) | ||
415 : | (setq res (//$ (float ad)(float ac))) | ||
416 : | (cond ((not (epsp (plus b1 (times a1 res)))) | ||
417 : | `((,(//$ (float (minus (plus d1 (times c1 res)))) | ||
418 : | (float (plus b1 (times a1 res)))) .,res))) | ||
419 : | ((not (epsp (plus b2 (times a2 res)))) | ||
420 : | `((,(//$ (float (minus (plus d2 (times c2 res)))) | ||
421 : | (float (plus b2 (times a2 res)))) .,res))) | ||
422 : | (t nil))) | ||
423 : | (t | ||
424 : | (do ((l (equation2 ab (plus ad bc) cd) (cdr l)) | ||
425 : | (ret)) | ||
426 : | ((atom l)ret) | ||
427 : | (push `(,(car l) .,(quotient | ||
428 : | (float (plus (times ab (car l)) ad)) | ||
429 : | (float ac))) | ||
430 : | ret)))))) | ||
431 : | ; | ||
432 : | ; | ||
433 : | ; | ||
434 : | (defun crosst1 (a b c) | ||
435 : | (lets ( | ||
436 : | ; (a (cons (extendline (car a) (car b) delta) (cdr a))) | ||
437 : | ; (b (cons (extendline (car b) (car a) (//$ delta (+$ 1.0 delta))) | ||
438 : | ; (cdr b))) | ||
439 : | (a1 (car a))(a1x (car a1))(a1y (cadr a1)) | ||
440 : | (a2 (cadr a))(a2x (car a2))(a2y (cadr a2)) | ||
441 : | (b1 (car b))(b1x (car b1))(b1y (cadr b1)) | ||
442 : | (b2 (cadr b))(b2x (car b2))(b2y (cadr b2)) | ||
443 : | (c1x (caar c))(c1y (cadar c)) | ||
444 : | (c2x (caadr c))(c2y (cadadr c)) | ||
445 : | (res (equation_ts (difference b2x a2x) (difference a2x c2x) | ||
446 : | (difference b1x a1x) (difference a1x c1x) | ||
447 : | (difference b2y a2y) (difference a2y c2y) | ||
448 : | (difference b1y a1y) (difference a1y c1y)))) | ||
449 : | ; (prind (list a b c res)) | ||
450 : | (do ((l res (cdr l)) | ||
451 : | (ret)) | ||
452 : | ((null l)ret) | ||
453 : | (and (<=$ (-$ delta) (cdar l) (+$ 1.0 delta)) | ||
454 : | (push (caar l) ret))))) | ||
455 : | ; | ||
456 : | (defun line-cross (a0 a1 b0 b1) | ||
457 : | (lets ((mat (vector 4 `(,(difference (car b0)(car b1)) | ||
458 : | ,(difference (cadr b0)(cadr b1)) | ||
459 : | ,(difference (car a1)(car a0)) | ||
460 : | ,(difference (cadr a1)(cadr a0))))) | ||
461 : | (det (difference (times (vref mat 0)(vref mat 3)) | ||
462 : | (times (vref mat 1)(vref mat 2)))) | ||
463 : | (ts) | ||
464 : | (rmat)) | ||
465 : | (cond ((epsp det) nil) | ||
466 : | (t | ||
467 : | (setq rmat (vector 6 (rmat mat))) | ||
468 : | (vset rmat 4 0) | ||
469 : | (vset rmat 5 0) | ||
470 : | (setq ts (affine (diff2 a1 b1) rmat)) | ||
471 : | (cond ((and (<=$ (-$ delta) (car ts) (+$ 1.0 delta)) | ||
472 : | (<=$ (-$ delta) (cadr ts) (+$ 1.0 delta))) | ||
473 : | t) | ||
474 : | (t nil)))))) | ||
475 : | (defun check-res (val a0 a1 b0 b1) | ||
476 : | (lets ((p0 (car a0))(q0 (cadr a0)) | ||
477 : | (p1 (car a1))(q1 (cadr a1)) | ||
478 : | (p2 (car b0))(q2 (cadr b0)) | ||
479 : | (p3 (car b1))(q3 (cadr b1)) | ||
480 : | (a0 (plus2 p0 (times2 val q0))) | ||
481 : | (a1 (plus2 p1 (times2 val q1))) | ||
482 : | (b0 (plus2 p2 (times2 val q2))) | ||
483 : | (b1 (plus2 p3 (times2 val q3)))) | ||
484 : | ; (prind (list val a0 a1 b0 b1 (line-cross a0 a1 b0 b1))) | ||
485 : | (line-cross a0 a1 b0 b1))) | ||
486 : | |||
487 : | ; | ||
488 : | (defun rmbigres (res) | ||
489 : | (do ((l res (cdr l)) | ||
490 : | (ret nil)) | ||
491 : | ((atom l)(nreverse ret)) | ||
492 : | (cond ((greaterp (car l) 10000.0) | ||
493 : | (push 10000.0 ret)) | ||
494 : | ((lessp (car l) -10000.0) | ||
495 : | (push -10000.0 ret)) | ||
496 : | (t (push (car l) ret))))) | ||
497 : | ; | ||
498 : | ; | ||
499 : | (defun res2section (res a0 a1 b0 b1) | ||
500 : | (cond | ||
501 : | ((null res)nil) | ||
502 : | (t | ||
503 : | (lets ((sortres (sort (rmbigres res) (function greaterp))) | ||
504 : | (ret (ncons (check-res (plus (max (abs (times 0.5 (car sortres))) 1) (car sortres)) a0 a1 b0 b1)))) | ||
505 : | ; (prind ret) | ||
506 : | (do ((l sortres (cdr l))) | ||
507 : | ((atom (cdr l)) | ||
508 : | (push (car l) ret) | ||
509 : | (push (check-res (difference (car l) (max (abs (times 0.5 (car l))) 1)) a0 a1 b0 b1) ret)) | ||
510 : | (cond | ||
511 : | ((equal (car l)(cadr l))) | ||
512 : | (t | ||
513 : | (push (car l) ret) | ||
514 : | (push (check-res | ||
515 : | (times 0.5 (plus (car l)(cadr l))) a0 a1 b0 b1) ret)))) | ||
516 : | (do ((l ret (cddr l)) | ||
517 : | (sec) | ||
518 : | (last)) | ||
519 : | ((atom (cdr l)) | ||
520 : | (and (car l) (push `(,last .t) sec)) | ||
521 : | (nreverse sec)) | ||
522 : | (match l | ||
523 : | (('t val 'nil .next) | ||
524 : | (push `(,last .,val) sec)) | ||
525 : | (('nil val 't .next) | ||
526 : | (setq last val)) | ||
527 : | (('nil val 'nil .next) | ||
528 : | (push `(,val .,val) sec) | ||
529 : | ; (prind sec) | ||
530 : | ) | ||
531 : | )))))) | ||
532 : | ; | ||
533 : | ; 単に衝突するまでの検出 | ||
534 : | ; | ||
535 : | (setq limit_margin 0.0) | ||
536 : | (defun extend_element (element points limit_flag) | ||
537 : | (lets ((pp (cadr element))(ret)(p0)(p1)(len)(rate) | ||
538 : | (local_margin (cond (limit_flag 0)(limit_margin)))) | ||
539 : | (setq p0 (nth (car pp) points) p1 (nth (cadr pp) points)) | ||
540 : | ; (and limit_flag (prind limit_flag)) | ||
541 : | (setq len (metric2 (car p0)(car p1))) | ||
542 : | (setq rate (quotient (plus len local_margin) len)) | ||
543 : | (push `(,(plus2 (car p1) | ||
544 : | (times2 rate (diff2 (car p0) (car p1)))) | ||
545 : | ,(plus2 (cadr p1) | ||
546 : | (times2 rate (diff2 (cadr p0) (cadr p1))))) | ||
547 : | ret) | ||
548 : | (do ((l (cddr pp)(cdr l))) | ||
549 : | ((atom l) | ||
550 : | (push `(,(plus2 (car p0) | ||
551 : | (times2 rate (diff2 (car p1) (car p0)))) | ||
552 : | ,(plus2 (cadr p0) | ||
553 : | (times2 rate (diff2 (cadr p1) (cadr p0))))) | ||
554 : | ret) | ||
555 : | ; (prind ret) | ||
556 : | (nreverse ret)) | ||
557 : | (push p1 ret) | ||
558 : | (setq p0 p1) | ||
559 : | (setq p1 (nth (car l) points))))) | ||
560 : | |||
561 : | (defun element-limit1 (e1 p1 e2 p2 param) | ||
562 : | (lets ((points1) | ||
563 : | (points2) | ||
564 : | (limitflag (or (member (car e1) '(xlimit ylimit)) | ||
565 : | (member (car e2) '(xlimit ylimit)))) | ||
566 : | ) | ||
567 : | ; (prind (list e1 e2)) | ||
568 : | (setq points1 (extend_element e1 p1 limitflag)) | ||
569 : | (setq points2 (extend_element e2 p2 limitflag)) | ||
570 : | (element-limit2 points1 points2))) | ||
571 : | (defun element-limit2 (points1 points2) | ||
572 : | (do ((l points2 (cdr l))(res1)(res2)(res3)(res4)(section)) | ||
573 : | ((atom (cdr l))section) | ||
574 : | (do ((ll points1 (cdr ll))(res)) | ||
575 : | ((atom (cdr ll))) | ||
576 : | (setq res1 (crosst1 (car ll)(cadr ll)(car l))) | ||
577 : | (setq res2 (crosst1 (car ll)(cadr ll)(cadr l))) | ||
578 : | (setq res3 (crosst1 (car l)(cadr l)(car ll))) | ||
579 : | (setq res4 (crosst1 (car l)(cadr l)(cadr ll))) | ||
580 : | (setq res (append res1 res2 res3 res4)) | ||
581 : | (setq section | ||
582 : | (orsection section | ||
583 : | (res2section res (car ll)(cadr ll)(car l)(cadr l)))) | ||
584 : | ; (and (consp section)(consp (car section))(null (caar section))(break)) | ||
585 : | ))) | ||
586 : | ; | ||
587 : | ; 2つのエレメントについてsuitable tを求める(最大値にあらず). | ||
588 : | ; | ||
589 : | (defun element-limit (element1 points1 element2 points2 param) | ||
590 : | (lets ((type1 (car element1)) | ||
591 : | (type2 (car element2)) | ||
592 : | (section | ||
593 : | (element-limit1 element1 points1 element2 points2 param))) | ||
594 : | ; (prind (list 'soko1 element1 element2 section)) | ||
595 : | (do ((l (get 'alllimit 'limit)(cdr l))) | ||
596 : | ((atom l)) | ||
597 : | (cond ((and (eq_member type1 (caaar l)) | ||
598 : | (eq_member type2 (cadaar l))) | ||
599 : | (setq section | ||
600 : | (orsection section | ||
601 : | (limit-section element1 points1 element2 points2 | ||
602 : | param (cdar l)))) | ||
603 : | ; (exit) | ||
604 : | ) | ||
605 : | ((and (eq_member type2 (caaar l)) | ||
606 : | (eq_member type1 (cadaar l))) | ||
607 : | (setq section | ||
608 : | (orsection | ||
609 : | section | ||
610 : | (limit-section element1 points1 element2 points2 | ||
611 : | `((reverse) .,param) (cdar l)))) | ||
612 : | ; (exit) | ||
613 : | ))) | ||
614 : | section)) | ||
615 : | ; | ||
616 : | ; prim1とprim2*(I+t*conv)とが制約を満たすような最大のtを求める | ||
617 : | ; これは, 線密度等によって変わるものだから, paramを与える | ||
618 : | ; | ||
619 : | ; affineはやめよう. 拡大+平行移動(拡大の中心+X,Y拡大率+平行移動X,Y) | ||
620 : | ; | ||
621 : | (defun general-limit (prim1 prim2 conv param) | ||
622 : | (section2s (general-section prim1 prim2 conv param))) | ||
623 : | ; | ||
624 : | (defun add0vector (points) | ||
625 : | (mapcar points (function (lambda (x) (list x '(0 0)))))) | ||
626 : | ; | ||
627 : | (defun addvector (points conv) | ||
628 : | (mapcar points (function (lambda (x) (list x (affine x conv)))))) | ||
629 : | ; | ||
630 : | (defun general-section (prim1 prim2 conv param) | ||
631 : | (general-section1 `(,(add0vector (car prim1)) .,(cdr prim1)) | ||
632 : | `(,(addvector (car prim2) conv) .,(cdr prim2)) | ||
633 : | param)) | ||
634 : | ; | ||
635 : | (defun general-section1 (prim1 prim2 param) | ||
636 : | (lets ((points1 (car prim1)) | ||
637 : | (lines1 (cadr prim1)) | ||
638 : | (points2 (car prim2)) | ||
639 : | (lines2 (cadr prim2)) | ||
640 : | (critical) | ||
641 : | ) | ||
642 : | ; (prind points1) | ||
643 : | ; (prind points2) | ||
644 : | (and (boundp 'DEBUG)(terpri)) | ||
645 : | (do ((l lines1 (cdr l)) | ||
646 : | (sec)) | ||
647 : | ((atom l) | ||
648 : | (and (boundp 'DEBUG1)(prind critical)) | ||
649 : | sec) | ||
650 : | (do ((ll lines2 (cdr ll))(tsec)) | ||
651 : | ((atom ll)) | ||
652 : | ; (break) | ||
653 : | ; (prind (list (car l)(car ll))) | ||
654 : | (setq tsec (element-limit (car l) points1 | ||
655 : | (car ll) points2 param)) | ||
656 : | ; (prind tsec) | ||
657 : | (cond ((not (equal sec (orsection sec tsec))) | ||
658 : | (and (boundp 'DEBUG) | ||
659 : | (let ((standard-output terminal-output)) | ||
660 : | (prind `(,(car l),(car ll),(orsection sec tsec) | ||
661 : | ,tsec | ||
662 : | ,(extend_element (car l) points1 nil) | ||
663 : | ,(extend_element (car ll) points2 nil) | ||
664 : | )))) | ||
665 : | (setq critical `(,(car l),(car ll),(orsection sec tsec) | ||
666 : | ,(extend_element (car l) points1 nil) | ||
667 : | ,(extend_element (car ll) points2 nil) | ||
668 : | ,param)))) | ||
669 : | (setq sec (orsection sec tsec )) | ||
670 : | ; (prind sec) | ||
671 : | )))) | ||
672 : | ; | ||
673 : | ; これまでの方法では, すべてを点対線の関係だけでとらえていたので, | ||
674 : | ; それを補うものも定義する | ||
675 : | ; | ||
676 : | ; 与えるパラメータはpointarrayを2つとvectorarray | ||
677 : | ktanaka | 1.2 | ; |
678 : | ; 組合わせのためだけに存在する仮想的なxlimit, ylimit | ||
679 : | ; というエレメントを除く | ||
680 : | ; | ||
681 : | (defun rm-limit (prim) | ||
682 : | (do ((l (cadr prim) (cdr l))(ret)) | ||
683 : | ((atom l)`(,(car prim) ,(nreverse ret).,(cddr prim))) | ||
684 : | (or (memq (caar l) '(xlimit ylimit)) | ||
685 : | (push (car l) ret)))) |
ktanaka Powered by ViewCVS 1.0-dev |
ViewCVS and CVS Help |