Revision: 1.1.1.1 - (view) (download) (as text)
1 : | ktanaka | 1.1 | // |
2 : | // Skeleton$B%G!<%?$rEO$7$F(B, $B%"%&%H%i%$%s$rJV$9(B | ||
3 : | // | ||
4 : | public class Renderer { | ||
5 : | static final boolean debug=false; | ||
6 : | static Point[] indexToPoints(Point[] points,int[] indices){ | ||
7 : | int i,len=indices.length; | ||
8 : | Point[] ret=new Point[len]; | ||
9 : | for(i=0;i<len;i++) | ||
10 : | ret[i]=points[indices[i]]; | ||
11 : | return ret; | ||
12 : | } | ||
13 : | public Outline[] elementRenderer(Point[] points,Element element){ | ||
14 : | int type=element.type; | ||
15 : | Point[] elementPoints=indexToPoints(points,element.points); | ||
16 : | switch(type){ | ||
17 : | case Element.ten: | ||
18 : | return ten(elementPoints,element.annotations); | ||
19 : | case Element.tate: | ||
20 : | return tate(elementPoints,element.annotations); | ||
21 : | case Element.yoko: | ||
22 : | return yoko(elementPoints,element.annotations); | ||
23 : | case Element.migiue: | ||
24 : | return migiue(elementPoints,element.annotations); | ||
25 : | case Element.hidari: | ||
26 : | return hidari(elementPoints,element.annotations); | ||
27 : | case Element.tatehidari: | ||
28 : | return tatehidari(elementPoints,element.annotations); | ||
29 : | case Element.migi: | ||
30 : | return migi(elementPoints,element.annotations); | ||
31 : | case Element.kozato: | ||
32 : | return kozato(elementPoints,element.annotations); | ||
33 : | case Element.tatehane: | ||
34 : | return tatehane(elementPoints,element.annotations); | ||
35 : | case Element.tsukurihane: | ||
36 : | return tsukurihane(elementPoints,element.annotations); | ||
37 : | case Element.sanzui: | ||
38 : | return sanzui(elementPoints,element.annotations); | ||
39 : | case Element.kokoro: | ||
40 : | return kokoro(elementPoints,element.annotations); | ||
41 : | case Element.tasuki: | ||
42 : | return tasuki(elementPoints,element.annotations); | ||
43 : | case Element.magaritate: | ||
44 : | return magaritate(elementPoints,element.annotations); | ||
45 : | case Element.kagi: | ||
46 : | return kagi(elementPoints,element.annotations); | ||
47 : | case Element.shin_nyuu: | ||
48 : | return shin_nyuu(elementPoints,element.annotations); | ||
49 : | case Element.hira_long: | ||
50 : | return hira_long(elementPoints,element.annotations); | ||
51 : | case Element.hira_circle: | ||
52 : | return hira_circle(elementPoints,element.annotations); | ||
53 : | case Element.outline: | ||
54 : | return outline(elementPoints,element.annotations); | ||
55 : | } | ||
56 : | return null; | ||
57 : | } | ||
58 : | public Outline[] ten(Point[] points,ElementAnnotation[] annotations){ | ||
59 : | return null; | ||
60 : | } | ||
61 : | public Outline[] tate(Point[] points,ElementAnnotation[] annotations){ | ||
62 : | return null; | ||
63 : | } | ||
64 : | public Outline[] yoko(Point[] points,ElementAnnotation[] annotations){ | ||
65 : | return null; | ||
66 : | } | ||
67 : | public Outline[] migiue(Point[] points,ElementAnnotation[] annotations){ | ||
68 : | return null; | ||
69 : | } | ||
70 : | public Outline[] hidari(Point[] points,ElementAnnotation[] annotations){ | ||
71 : | return null; | ||
72 : | } | ||
73 : | public Outline[] tatehidari(Point[] points,ElementAnnotation[] annotations){ | ||
74 : | return null; | ||
75 : | } | ||
76 : | public Outline[] migi(Point[] points,ElementAnnotation[] annotations){ | ||
77 : | return null; | ||
78 : | } | ||
79 : | public Outline[] kozato(Point[] points,ElementAnnotation[] annotations){ | ||
80 : | return null; | ||
81 : | } | ||
82 : | public Outline[] tatehane(Point[] points,ElementAnnotation[] annotations){ | ||
83 : | return null; | ||
84 : | } | ||
85 : | public Outline[] tsukurihane(Point[] points,ElementAnnotation[] annotations){ | ||
86 : | return null; | ||
87 : | } | ||
88 : | public Outline[] sanzui(Point[] points,ElementAnnotation[] annotations){ | ||
89 : | return null; | ||
90 : | } | ||
91 : | public Outline[] kokoro(Point[] points,ElementAnnotation[] annotations){ | ||
92 : | return null; | ||
93 : | } | ||
94 : | public Outline[] tasuki(Point[] points,ElementAnnotation[] annotations){ | ||
95 : | return null; | ||
96 : | } | ||
97 : | public Outline[] magaritate(Point[] points,ElementAnnotation[] annotations){ | ||
98 : | return null; | ||
99 : | } | ||
100 : | public Outline[] kagi(Point[] points,ElementAnnotation[] annotations){ | ||
101 : | return null; | ||
102 : | } | ||
103 : | public Outline[] shin_nyuu(Point[] points,ElementAnnotation[] annotations){ | ||
104 : | return null; | ||
105 : | } | ||
106 : | public Outline[] hira_long(Point[] points,ElementAnnotation[] annotations){ | ||
107 : | return null; | ||
108 : | } | ||
109 : | public Outline[] hira_circle(Point[] points,ElementAnnotation[] annotations){ | ||
110 : | return null; | ||
111 : | } | ||
112 : | public Outline[] outline(Point[] points,ElementAnnotation[] annotations){ | ||
113 : | return null; | ||
114 : | } | ||
115 : | // p0 $B$H(B p1 $B$N4V$rI}(B width $B$GD>@~FyIU$1(B | ||
116 : | public Outline[] line2(Point p0,Point p1,double width){ | ||
117 : | Point v0=p1.minus(p0).rot270().normal(width); | ||
118 : | Outline[] ret=new Outline[2]; | ||
119 : | OutlineComponent[] right=new OutlineComponent[1]; | ||
120 : | right[0]=new Line(p0.plus(v0),p1.plus(v0)); | ||
121 : | OutlineComponent[] left=new OutlineComponent[1]; | ||
122 : | left[0]=new Line(p0.minus(v0),p1.minus(v0)); | ||
123 : | ret[0]=new Outline(right); | ||
124 : | ret[1]=new Outline(left); | ||
125 : | return ret; | ||
126 : | } | ||
127 : | // | ||
128 : | public Outline curveSub(Point p0, Point p1, Point p2, Point p3, | ||
129 : | double r0, double r1){ | ||
130 : | OutlineComponent[] ret=new OutlineComponent[1]; | ||
131 : | Point p12=Point.cross(p0,p1,p2,p3); | ||
132 : | if(debug) | ||
133 : | System.out.println("cross("+p0+","+p1+","+p2+","+p3+")="+p12); | ||
134 : | ret[0]=new Bezier(p0,p0.inter(p12,r0),p3.inter(p12,r1),p3); | ||
135 : | return new Outline(ret); | ||
136 : | } | ||
137 : | // p0, p1, p2$B$N4V$r6J@~$G7k$V(B | ||
138 : | // p0 $B$G$OI}(B w0, p2$B$G$OI}(Bw3 | ||
139 : | // p0$B$+$i(B p1$B$K(Br0(0$B$+$i(B1)$B?J$s$@$H$3$m$GI}(B w1 | ||
140 : | // p2$B$+$i(B r1(0$B$+$i(B1)$BLa$C$?$H$3$m$GI}(B w2$B$H$J$k(B | ||
141 : | // $B$?$@$7(B, $B30B&$N%+!<%V$HFbB&$N%+!<%V$N(B Bezier$B@)8fE@$NHfN($,(B | ||
142 : | // $BF1$8$K$J$k$h$&$K(B | ||
143 : | public Outline[] curve2(Point p0,Point p1,Point p2, | ||
144 : | double r0,double r1, | ||
145 : | double w0,double w1,double w2,double w3){ | ||
146 : | Point p01=p0.inter(p1,r0),p12=p2.inter(p1,r1); | ||
147 : | Outline[] ret=new Outline[2]; | ||
148 : | Point v0=p1.minus(p0).rot270(), v2=p2.minus(p0).rot270(); | ||
149 : | ret[0]=curveSub(p0.plus(v0.normal(w0)), | ||
150 : | p0.inter(p1,r0).plus(v0.normal(w1)), | ||
151 : | p2.inter(p1,r1).plus(v2.normal(w2)), | ||
152 : | p2.plus(v2.normal(w3)), | ||
153 : | r0,r1); | ||
154 : | ret[1]=curveSub(p0.minus(v0.normal(w0)), | ||
155 : | p0.inter(p1,r0).minus(v0.normal(w1)), | ||
156 : | p2.inter(p1,r1).minus(v2.normal(w2)), | ||
157 : | p2.minus(v2.normal(w3)), | ||
158 : | r0,r1); | ||
159 : | return ret; | ||
160 : | } | ||
161 : | } |
ktanaka Powered by ViewCVS 1.0-dev |
ViewCVS and CVS Help |