Documentation for the GNU Go Project
Edition 3.0.0
August, 2001

®* e
GNU Go 3.0

By Daniel Bump, David Denholm, Jerome Dumonteil,
Gunnar Farneback, Thomas Traber, Tanguy Urvoy, Inge Wallin

GNU GO 3.0

Copyright (©) 1999, 2000, 2001 Free Software Foundation, Inc.

This is Edition 3.0.0 of The GNU Go Project documentation,
for the 3.0 version of the GNU GO program.

Published by the Free Software Foundation
675 Massachusetts Avenue

Cambridge, MA 02139-3309 USA

Phone: +1-617-876-3296

Permission is granted to make and distribute verbatim or modified copies of this manual
is given provided that the terms of the GNU Free Documentation License (see Section A.2
[GFDL], page 179) are respected.

Permission is granted to make and distribute verbatim or modified copies of the program
GNU Go is given provided the terms of the GNU General Public License (see Section A.1
[GPL], page 173) are respected.

Chapter 1: Introduction 1

1 Introduction

This is GNU Go 3.0, a Go program. Development versions of GNU Go may be found at
http://wuw.gnu.org/software/gnugo/devel.html. Contact us at gnugo@gnu.org if you
are interested in helping.

1.1 About GNU Go and this Manual

The challenge of Computer Go is not to beat the computer, but to program the computer.

In Computer Chess, strong programs are capable of playing at the highest level, even
challenging such a player as Garry Kasparov. No Go program even as strong as amateur
shodan exists. The challenge is to write such a program.

To be sure, existing Go programs are strong enough to be interesting as opponents, and
the hope exists that some day soon a truly strong program can be written.

GNU Go is getting stronger. For one thing, we’ve paid a lot of attention to life and
death. GNU Go 3.0 can consistently give GNU Go 2.6 a four stone handicap. In a four
stone game against GNU Go 2.6, GNU Go 3.0 very often kills a group.

Until now, Go programs have always been distributed as binaries only. The algorithms
in these proprietary programs are secret. No-one but the programmer can examine them to
admire or criticise. As a consequence, anyone who wished to work on a Go program usually
had to start from scratch. This may be one reason that Go programs have not reached a
higher level of play.

Unlike most Go programs, GNU Go is Free Software. Its algorithms and source code
are open and documented. They are free for any one to inspect or enhance. We hope this
freedom will give GNU Go’s descendents a certain competetive advantage.

Here is GNU Go’s Manual. There are doubtless inaccuracies. The ultimate documenta-
tion is in the commented source code itself.

The first three chapters of this manual are for the general user. Chapter 3 is the User’s
Guide. The rest of the book is for programmers, or persons curious about how GNU Go
works. Chapter 4 is a general overview of the engine. Chapter 5 introduces various tools
for looking into the GNU Go engine and finding out why it makes a certain move, and
Chapters 6-7 form a general programmer’s reference to the GNU Go API. The remaining
chapters are more detailed explorations of different aspects of GNU Go’s internals.

1.2 Copyrights

Copyright 1999, 2000, 2001 by the Free Software Foundation except for the files ‘gmp.c’
and ‘gmp.h’, which are copyrighted by Bill Shubert (wms@igoweb.org).

All files are under the GNU General Public License (see Section A.1 [GPL],
page 173), except ‘gmp.c’, ‘gmp.h’, ‘gtp.c’, ‘gtp.h’; the files ‘interface/html/*’ and
‘win/makefile.win’.

The two files ‘gmp.c’ and ‘gmp.h’ were placed in the public domain by William Shubert,
their author, and are free for unrestricted use.

Chapter 1: Introduction 2

The files ‘gtp.c’ and ‘gtp.h’ are copyright the Free Software Foundation. In the interests
of promoting the Go Text Protocol these two files are licensed under a less restrictive license
than the GPL and are free for unrestricted use (see Section A.3 [GTP License|, page 185).

The files ‘interface/html/*’ are not part of GNU Go but are a separate program and
are included in the distribution for the convenience of anyone looking for a CGI interface to
GNU Go. They were placed in the public domain by their author, Douglas Ridgway, and
are free for unrestricted use. The file ‘win/makefile.win’ is also in the public domain and
is free for unrestricted use.

1.3 Authors

GNU Go maintainers are Daniel Bump and Gunnar Farnebdck. GNU Go authors (in
chronological order of contribution) are Man Li, Daniel Bump, David Denholm, Gunnar
Farneback, Nils Lohner, Jerome Dumonteil, Tommy Thorn, Nicklas Ekstrand, Inge Wallin,
Thomas Traber, Douglas Ridgway, Teun Burgers, Tanguy Urvoy, Thien-Thi Nguyen, Heikki
Levanto, Mark Vytlacil, Adriaan van Kessel, Wolfgang Manner, Jens Yllman and Don
Dailey.

1.4 Thanks

We would like to thank Arthur Britto, Tim Hunt, Piotr Lakomy, Paul Leonard, Jean-
Louis Martineau, Andreas Roever and Pierce Wetter for helpful correspondence. Thanks
to everyone who stepped on a bug (and sent us a report)!

Thanks to Gary Boos, Peter Gucwa, Martijn van der Kooij, Michael Margolis, Trevor
Morris, Mans Ullerstam, Don Wagner and Yin Zheng for help with Visual C++.

And thanks to Alan Crossman, Stephan Somogyi, Pierce Wetter and Mathias Wagner
for help with Macintosh.

Special thanks to Ebba Berggren for creating our logo, based on a design by Tanguy Ur-
voy and comments by Alan Crossman. The old GNU Go logo was adapted from Jamal Han-
nah’s typing GNU: http://www.gnu.org/graphics/atypinggnu.html. Both logos can be
found in ‘doc/newlogo.*” and ‘doc/oldlogo.* .

We would like to thank Stuart Cracraft, Richard Stallman and Man Lung Li for their
interest in making this program a part of GNU, William Shubert for writing CGoban and
gmp.c, Rene Grothmann for Jago and Erik van Riper and his collaborators for NNGS.

1.5 The GNU Go Task List

You can help make GNU Go the best Go program.

This is a task-list for anyone who is interested in helping with GNU Go. If you want to
work on such a project you should correspond with us until we reach a common vision of
how the feature will work!

A note about copyright. The Free Software Foundation has the copyright to GNU Go.
For this reason, before any code can be accepted as a part of the official release of GNU
Go, the Free Software Foundation will want you to sign a copyright assignment.

Chapter 1: Introduction 3

Of course you could work on a forked version without signing such a disclaimer. You
can also distribute such a forked version of the program so long as you also distribute the
source code to your modifications under the GPL (see Section A.1 [GPL], page 173). But
if you want your changes to the program to be incorporated into the version we distribute
we need you to assign the copyright.

Please contact the GNU Go maintainers, Daniel Bump (bump@math.stanford.edu) and
Gunnar Farnebéck (gf@isy.liu.se), to get more information and the papers to sign.

Below is a list of things YOU could work on. We are already working on some of these
tasks, but don’t let that stop you. Please contact us or the person assigned to task for
further discussion.

1. Report and fix bugs.

Bugs are an important cause of weakness in any Go program! If you can,
send us bug FIXES as well as bug reports. If you see some bad behavior,
figure out what causes it, and what to do about fixing it. And send us
a patch! If you find an interesting bug and cannot tell us how to fix it,
we would be happy to have you tell us about it anyway. Send us the sgf
file (if possible) and attach other relevant information, such as the GNU
Go version number. In cases of assertion failures and segmentation faults
we probably want to know what operating system and compiler you were
using, in order to determine if the problem is platform dependent.

2. Extend the regression test suites.

See the texinfo manual in the doc directory for a description of how to do
this. In particular it would be useful with test suites for common life and
death problems. Currently second line groups, L groups and the tripod
shape are reasonably well covered, but there is for example almost nothing
on comb formations, carpenter’s square, and so on. Other areas where test
suites would be most welcome are fuseki, tesuji, and endgame.

3. Tune the pattern databases.

This is a sort of art. It is not necessary to do any programming to do this
since most of the patterns do not require helpers. We would like it if a few
more Dan level players would learn this skill.

4. Extend and tune the Joseki database.
5. Rewrite the semeai module

The semeai module is vastly in need of improvement. In fact, semeai can
probably only be analyzed by reading to discover what backfilling is needed
before we can make atari.

6. Write a connection analysis module.

The connection analysis is today completely static and has a hard time
identifying mutually dependent connections or moves that simultaneously
threatens two or more connections. This could be improved by writing a
connection reader, which like the owl code uses pattern matching to find a
small amount of key moves to try.

7. Speed up the tactical reading.

GNU Go is reasonably accurate when it comes to tactical reading, but not
always very fast. The main problem is that too many ineffective moves are

Chapter 1: Introduction

tested, leading to strange variations that shouldn’t need consideration. To
improve this the move generation heuristics in the reading code needs to
be refined. Some improvements should also be possible to obtain by tuning
the move ordering.

8. Automatically search for errors.

In some positions GNU Go may report a group as alive or connected with
a living group. But after the opponent has placed one stone GNU Go may
change the status to dead, without going through a critical status. It would
be nice if these positions could be automatically identified and logged for
later analysis.

Chapter 2: Installation 5

2 Installation

You can get the most recent version of GNU Go ftp.gnu.org or a mirror (see
http://www.gnu.org/order/ftp.html for a list). You can read about newer versions and
get other information at http://www.gnu.org/software/gnugo/.

2.1 GNU/Linux and Unix

Untar the sources, change to the directory gnugo-3.0.0. Now do:

./configure [OPTIONS]
make

The most important configure options, cache size, default level and dfa will be explained
in detail in the next section (see (undefined) [Configure Options|, page (undefined)). Prob-
ably you do not need to set these unless you are dissatisfied with GNU Go’s performance
for any reason.

As an example,
./configure --enable-cache-size=32 --enable-level=38

creates a 48 Mb cache in RAM and sets the level to 8. Both these defaults can be overridden
at run time.

If you do not specify any options, the default level is 10 (highest supported), and the
default cache size is 16, and the DFA is not enabled.

If you have a slow machine or find GNU Go too slow you may want to decrease the
default level. At level 8 the engine is playing about 1.6 times faster than at level 10.

Increasing the cache size will improve performance up to a point — once the cache is
so large that it cannot be kept in RAM, GNU Go will start swapping (characterized by
frequent hard drive accesses) and performance will degrade.

You have now made a binary called ‘interface/gnugo’. Now (running as root) type
make install
to install gnugo in ‘/usr/local/bin’.
There are different methods of using GNU Go. You may run it from the command line
by just typing:
gnugo
but it is nicer to run it using CGoban 1 (under X-Windows) or Jago (on any platform with
a Java runtime environment).

You can get the most recent version of CGoban 1 from Bill Shubert’s web site:
http://wuw.igoweb.org/ wms/comp/cgoban/index.html The CGoban version number
MUST be 1.9.1 at least or it won’t work. CGoban 2 will not work.

See Section 3.2 [CGoban], page 10, for instructions on how to run GNU Go from Cgoban,
or See Section 3.5 [Jago|, page 12, for Jago.

There are three options which you should consider configuring, particularly if you are
dissatisfied with GNU Go’s performance.

Chapter 2: Installation 6

2.1.1 Ram Cache

By default, GNU Go makes a cache of 16 Megabytes in RAM for its internal use. The
cache is used to store intermediate results during its analysis of the position.

Increasing the cache size will often give a modest speed improvement. If your system
has lots of RAM, consider increasing the cache size. But if the cache is too large, swapping
will occur, causing hard drive accesses and degrading performance. If your hard drive seems
to be running excessively your cache may be too large. On GNU/Linux systems, you may
detect swapping using the program ’top’. Use the '’ command to toggle SWAP display.

You may override the size of the default cache at compile time by running one of:

./configure --enable-cache-size=n
to set the cache size to n megabytes. For example

./configure --enable-cache-size=48
creates a cache of size 48 megabytes. If you omit this, your default cache size will be 16
MB. You must recompile and reinstall GNU Go after reconfiguring it by running make and
make install.

You may override the compile-time defaults by running gnugo with the option
‘-—cache-size n’, where n is the size in megabytes of the cache you want, and ‘--level’
where n is the level desired. We will discuss setting these parameters next in detail.

2.1.2 Default Level

GNU Go can play at different levels. Up to level 10 is supported. At level 10 GNU Go
is much more accurate but takes an average of about 1.6 times longer to play than at level
8.

The level can be set at run time using the ‘--level’ option. If you don’t set this,
the default level will be used. You can set the default level with the configure option
‘~—enable-level=n’. For example

¢

./configure --enable-level=9
sets the default level to 9. If you omit this parameter, the compiler sets the default level
to 10. We recommend using level 10 unless you find it too slow. If you decide you want to
change the default you may rerun configure and recompile the program.

2.1.3 DFA Configure Option

If you ./configure --enable-dfa you get the experimental DFA (Discrete Finite-State
Automata) pattern matcher. This will result in a larger but somewhat faster engine. The
option is considered experimental because it is new and harder to debug but sufficiently
tested that it is probably safe.

2.2 Compiling GNU Go on Microsoft platforms

GNU Go is being developed on Unix variants. GNU Go is easy to build and install on
those platforms. GNU Go 3.0 has support for building on MS-DOS, Windows 3.x, Windows
NT /2000 and Windows 95/98.

There are two approaches to building GNU Go on Microsoft platforms.

Chapter 2: Installation 7

1. The first approach is to install a Unix-like environment based on ports of GCC to
Microsoft platforms. This approach is fully supported by the GNU Go developers and
works well. Several high quality free Unix-environments for Microsoft platforms are
available.

One benefit of this approach is that it is easier to participate in Gnu Go’s develop-
ment. These unix environments come for instance with the ‘diff’ and ‘patch’ programs
necessary to generate and apply patches.
Another benefit of the unix environments is that development versions (which may be
stronger than the latest stable version) can be built too. The supporting files for VC are
not always actively worked on and consequently are often out of sync for development
versions, so that VC will not build cleanly.

2. The second approach is to use compilers such as Visual C developed specially for the
Microsoft platform. GNU Go 2.6 and later support Visual C. Presently we support
Visual C through the project files which are supplied with the distribution.

The rest of this section gives more details on the various ways to compile GNU go for
Microsoft platforms.

2.2.1 Windows 95/98, MS-DOS and Windows 3.x using DJGPP

On these platforms DJGPP can be used. GNU Go installation has been tested in a
DOS-Box with long filenames on Windows 95/98. GNU Go compiles out-of-the box with
the DJGPP port of GCC using the standard Unix build and install procedure.

Some URLs for DJGPP:

DJGPP home page: http://www.delorie.com/djgpp/
DJGPP ftp archive on simtel:
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2/
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/

Once you have a working DJGPP environment and you have downloaded the gnugo
source available as gnugo-3.0.0.tar.gz you can build the executable as follows:
tar zxvf gnugo-3.0.0.tar.gz
cd gnugo-3.0.0
./configure
make

Optionally you can download glib for DJGPP to get a working version of snprintf.

2.2.2 Windows NT, Windows 95/98 using Cygwin

On these platforms the Cygwin environment can be installed. Recent versions of
Cygwin install very easily with the setup program available from the cygwin homepage.
<http://sourceware.cygnus.com/cygwin/. GNU Go compiles out-of-the box using the
standard Unix build procedure on the Cygwin environment. After installation of cygwin
and fetching ‘gnugo-3.0.0.tar.gz’ you can type:

tar zxvf gnugo-3.0.0.tar.gz
cd gnugo-3.0.0

Chapter 2: Installation 8

./configure
make
The generated executable is not a stand-alone executable: it needs cygwinl.dll that
comes with the Cygwin environment. cygwinl.dll contains the emulation layer for Unix.

Cygwin Home page: http://sourceware.cygnus.com/cygwin/

Optionally you can use glib to get a working version of snprintf. Glib builds out of the
box on cygwin.

2.2.3 Windows NT, Windows 95/98 using MinGW 32

The Cygwin environment also comes with MinGW32. This generates an executable that
relies only on Microsoft DLLs. This executable is thus completely comparable to a Visual
C executable and easier to distribute than the Cygwin executable. To build on cygwin an
executable suitable for the win32 platform type the following at your cygwin prompt:

tar zxvf gnugo-3.0.0.tar.gz

cd gnugo-3.0.0

env CC=’gcc -mno-cygwin’ ./configure
make

2.2.4 Windows NT, Windows 95/98 using Visual C and project
files

We assume that you do not want to change any configure options. If you do, you should
edit the file ‘config.vc’. Note that when configure is run, this file is overwritten with
the contents of ‘config.vcin’, so you may also want to edit ‘config.vcin’, though the
instructions below do not have you running configure.

1. Open the VC++ 6 workspace file gnugo.dsw

2. Set the gnugo project as the active project (right-click on it, and select "Set as Active
Project". Select 'Build’ from the main menu, then select 'Build gnugo.exe’, this will
make all of the runtime subprojects.

Notes:
e a) The build can also be done from the command line:
msdev gnugo.dsw /make "gnugo - Win32 Release"

e b) The default configuration is 'Debug’, build the optimized version by selecting 'Build’
from the main menu , then select ’Set active Configuration’ and click on ’gnugo - Win32
Release’. See the Visual Studio help for more on project configurations.

e ¢) A custom build step in the first dependent subproject (utils) copys config.vc to
config.h in the root directory. If you want to modify config.h, copy any changes to
config.vc. In particular if you want to change the default level or default cache size,
whose significance is discussed in See Section 2.1 [GNU/Linux and Unix], page 5, you
must edit this file.

e d) This project was built and tested using VC version 6.0. It has not been tested, and
will most likely not work with earlier versions of VC.

e ¢) If for any reason some or all of the automatically built files in the patterns directory
do not build you can run mkpat on the command line to make these files. For reference
here are the recommended mkpat options:

Chapter 2: Installation 9

FILE MKPAT OPTIONS INPUT FILES
conn.c mkpat -c conn conn.db
patterns.c mkpat -b pat patterns.db, patterns2.db
apatterns.c mkpat -X attpat attack.db
dpatterns.c mkpat defpat defense.db
influence.c mkpat -c influencepat influence.db
endgame.c mkpat -b endpat endgame.db

owl_attackpat.c mkpat -b owl_attackpat owl_attackpats.db
owl_vital_apat.c mkpat -b owl_vital_apat owl_vital_apats.db
owl_defendpat.c mkpat -b owl_defendpat owl_defendpats.db

fuseki9.c mkpat -b -f fuseki9 fuseki9.db
fusekil9.c mkpat -b -f fusekil9 fusekil9.db
josekidb.c mkpat -b joseki hoshi.db, komoku.db,

sansan.db, takamoku.db
mokuhazushi.db

2.2.5 Running GNU Go on Windows NT and Windows 95/98

GNU Go does not come with its own graphical user interface. The Java client jago can
be used.

To run Jago you need a Java Runtime Environment (JRE). This can be obtained from
http://www.javasoft.com/. This is the runtime part of the Java Development Kit (JDK)
and consists of the Java virtual machine, Java platform core classes, and supporting files.
The Java virtual machine that comes with I.E. 5.0 works also.

Jago: http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/jago/Go.html
1. Invoke GNU Go with gnugo --quiet --mode gmp
2. Run gnugo --help from a cygwin or DOS window for a list of options
3. optionally specify —-level <level> to make the game faster
Jago works well with both the Cygwin and MinGW32 executables. The DJGPP exe-

cutable also works, but has some problems in the interaction with jago after the game has
been finished and scored.

2.3 Macintosh

If you have Mac OS X you can build GNU Go using Apple’s compiler, which is derived
from GCC. We recommend adding the flag -no-cpp-precom to CFLAGS.

Chapter 3: Using GNU Go 10

3 Using GNU Go

3.1 Getting Documentation

You can obtain a printed copy of the manual by running make gnugo.ps in the
‘doc/’directory, then printing the resulting postscript file. The manual contains a great
deal of information about the algorithms of GNU Go.

On platforms supporting info documentation, you can usually install the manual by
executing ‘make install’ (running as root) from the ‘doc/’ directory. The info documentation
can be read conveniently from within Emacs by executing the command Control-h i.

Documentation in ‘doc/’ consists of a man page ‘gnugo.6’, the info files ‘gnugo.info’,
‘gnugo.info-1’, ... and the Texinfo files from which the info files are built. The Texinfo
documentation contains this User’s Guide and extensive information about the algorithms
of GNU Go, for developers.

If you want a typeset copy of the Texinfo documentation, you can make gnugo.dvi or
make gnugo.ps in the ‘doc/’ directory.

You can make an HTML version with the command makeinfo --html gnugo.texi.
Better HTML documentation may be obtained using texi2html -split_chapter
gnugo.texi. You can obtain the texi2html utility (version 1.61 or later)
from http://www.mathematik.uni-kl.de/~obachman/Texi2html/. (See also
http://texinfo.org/texi2html/.)

User documentation can be obtained by running gnugo --help or man gnugo from any
terminal, or from the Texinfo documentation.

Documentation for developers is in the Texinfo documentation, and in comments
throughout the source. Contact us at gnugo@gnu.org if you are interested in helping to
develop this program.

3.2 Running GNU Go via CGoban

This is an extremely nice way to run GNU Go. CGoban provides a beautiful graphic
user interface under X-Windows.

Start CGoban. When the CGoban Control panel comes up, select “Go Modem”. You will
get the Go Modem Protocol Setup. Choose one (or both) of the players to be “Program,”
and fill out the box with the path to gnugo. After clicking OK, you get the Game Setup
window. Choose “Rules Set” to be Japanese (otherwise handicaps won’t work). Set the
board size and handicap if you want.

If you want to play with a komi, you should bear in mind that the GMP does not have
any provision for communicating the komi. Because of this misfeature, unless you set the
komi at the command line GNU Go will have to guess it. It assumes the komi is 5.5 for
even games, 0.5 for handicap games. If this is not what you want, you can specify the komi
at the command line with the ‘~—=komi’ option, in the Go Modem Protocol Setup window.
You have to set the komi again in the Game Setup window, which comes up next.

Click OK and you are ready to go.

Chapter 3: Using GNU Go 11

In the Go Modem Protocol Setup window, when you specify the path to GNU Go, you
can give it command line options, such as ‘-—quiet’ to suppress most messages. Since the
Go Modem Protocol preempts standard I/O other messages are sent to stderr, even if they
are not error messages. These will appear in the terminal from which you started CGoban.

3.3 Ascii Interface

Even if you do not have CGoban installed you can play with GNU Go using its default
Ascii interface. Simply type gnugo at the command line, and GNU Go will draw a board.
Typing help will give a list of options. At the end of the game, pass twice, and GNU Go will
prompt you through the counting. You and GNU Go must agree on the dead groups—you
can toggle the status of groups to be removed, and when you are done, GNU Go will report
the score.

You can save the game at any point using the save filename command. You can reload
the game from the resulting SGF file with the command gnugo -1 filename --mode ascii.
Reloading games is not supported when playing with CGoban. However you can use
CGoban to save a file, then reload it in ascii mode.

3.4 GNU Go mode in Emacs

You can run GNU Go from Emacs. This has the advantage that you place the stones
using the cursor arrow keys. This may require Emacs 20.4 or later—it has been tested with
Emacs 20.4 but does not work with Emacs 19 or Emacs 20.2.

Load ‘interface/gnugo.el’; either by M-x load-file, or by copying the file into your
‘site-lisp’ directory and adding a line
(autoload ’gnugo "gnugo" "GNU Go" t)
in your ‘.emacs’ file.

Now you may start GNU Go by M-x gnugo. You will be prompted for command
line options see Section 3.9 [Invoking GNU Gol, page 12. Using these, you may set the
handicap, board size, color and komi.

You can enter commands from the GNU Go ASCII interface after typing ‘:’. For
example, to take a move back, type ‘:back’, or to list all commands, type ‘:help’.

Here are the default keybindings:
e ‘Return’ or ‘Space’
Select point as the next move. An error is signalled for invalid locations.
Illegal locations, on the other hand, show up in the GNUGO Console buffer.

° 4q7 or LQ?
Quit. Both Board and Console buffers are deleted.

e ‘R’

Resign.
o ‘C-1’

Refresh. Includes restoring default window configuration.
o ‘M-’

Bury both Board and Console buffers (when the boss is near).

Chapter 3: Using GNU Go 12

Pass; i.e., select no location for your move.

Extended command. After typing the ‘:’ you can type a command for GNU
Go. The possible commands are as in See Section 3.3 [Ascii], page 11.

3.5 Running GNU Go via Jago

Jago, like CGoban is a client capable of providing GNU Go with a graphical user
interface. Unlike CGoban, it does not require X-Windows, so it is an attractive alternative
under Windows. You will need a Java runtime environment. Obtain Jago at

http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/jago/Go.html and
follow the links there for the Java runtime environment.

3.6 The Go Modem Protocol and Go Text Protocol

The Go Modem Protocol (GMP) was developed by Bruce Wilcox with
input from David Fotland, Anders Kierulf and others, according to the history in
http://www.britgo.org/tech/gmp.html.

Any Go program should support this protocol since it is a standard. Since CGoban
supports this protocol, the user interface for any Go program can be done entirely through
CGoban. The programmer can concentrate on the real issues without worrying about
drawing stones, resizing the board and other distracting issues.

GNU Go 3.0 introduces a new protocol, the Go Text Protocol (see Chapter 20 [GTP],
page 164) which we hope can serve the functions currently used by the GMP.

3.7 Computer Go Tournaments

Computer Tournaments currently use the Go Modem Protocol. The current method
followed in such tournaments is to connect the serial ports of the two computers by a
“null modem” cable. If you are running GNU/Linux it is convenient to use CGoban. If
your program is black, set it up in the Go Modem Protocol Setup window as usual. For
White, select “Device” and set the device to ‘/dev/cua0’ if your serial port is COM1 and
‘/dev/cual’ if the port is COM2.

3.8 Smart Go Format
The Smart Go Format (SGF), is the standard format for storing Go games. GNU

Go supports both reading and writing SGF files. The SGF specification (FF[4]) is at:
http://www.red-bean.com/sgf/

3.9 Invoking GNU Go: Command line options

Chapter 3: Using GNU Go

3.9.1 Some basic options

4__}1e1p77 é_h7
Print a help message describing the options. This will also tell you the
defaults of various parameters, most importantly the level and cache size.
The default values of these parameters can be set before compiling by
configure. If you forget the defaults you can find out using ‘--help’.

‘~-boardsize size’

Set the board size
‘~-komi num’

Set the komi
‘--level level’

GNU Go can play with different strengths and speeds. Level 10 is the
default. Decreasing the level will make GNU Go faster but less accurate
in its reading.

‘-—quiet’, ‘--silent’
Don’t print copyright and other messages. Messages specifically requested
by other command line options, such as ‘--trace’, are not supressed.

‘-1’ ‘-=-infile filename’
Load the named SGF file
‘-L’, ‘=—until move’

Stop loading just before the indicated move is played. move can be either
the move number or location.

‘-0’, ‘=—outfile filename’

Write sgf output to file
‘--mode mode’

Force the playing mode (’ascii’, test,” "gmp’ or ’gtp’). The default is ASCII,
but if no terminal is detected GMP (Go Modem Protocol) will be assumed.
In practice this is usually what you want, so you may never need this option.

3.9.2 Other general options:

‘-M’, ‘~-cache-size megs’
Memory in megabytes used for hashing. The default size is 16 unless
you configure gnugo with the command configure --enable-cache-
size=size before compiling to make size the default (see Chapter 2
[Installation], page 5). GNU Go stores results of its reading calculations
in a Hash table (see Section 14.2 [Hashing], page 125). If the Hash table is
filled, it is emptied and the reading continues, but some reading may have
to be repeated that was done earlier, so a larger cache size will make GNU
Go run faster, provided the cache is not so large that swapping occurs.
Swapping may be detected on GNU/Linux machines using the program
top. However if you have ample memory or if performance seems to be a
problem may want to increase the size of the Hash cache using this option.

13

Chapter 3: Using GNU Go 14

‘-—chinese-rules’
Use Chinese rules. This means that the Chinese or Area Counting is fol-
lowed. It may affect the score of the game by one point in even games,
more if there is a handicap (since in Chinese Counting the handicap stones
count for Black).

‘--japanese-rules’
Use Japanese Rules. This is the default wunless you specify
‘-—enable-chinese-rules’ as a configure option.

‘-—copyright’: Display the copyright notice

‘-—version’ or ‘-v’: Print the version number

‘--printsgf filename’: Create an SGF file containing a diagram of the board. Useful

with ‘-L’ to create diagrams from games.

3.9.3 Other options affecting strength and speed

3

The single parameter ‘--level’ is a convenient way of choosing whether to play
stronger or faster. This single parameter controls a host of other parameters which may
optionally be set individually at the command line. The default values of these parameters
may be found by running gnugo --help. Unless you are working on the program you
probably don’t need these options. Instead, just adjust the single variable ‘--level’.

These options are of use to developers tuning the program for performance and
accuracy.

e ‘-D’) ‘~—depth depth’
Deep reading cutoff. When reading beyond this depth (default 14) GNU
Go assumes that any string which can obtain 3 liberties is alive. Thus
GNU Go can read ladders to an arbitrary depth, but will miss other types
of capturing moves.
e ‘——branch-depth’
This sets the branch_depth, typically a little below the depth. Between
branch_depth and depth, attacks on strings with 3 liberties are considered
but branching is inhibited, so fewer variations are considered.
e ‘-B’ ‘~—backfill-depth depth’
Deep reading cutoff. Beyond this depth (default 9) GNU Go will no longer
try backfilling moves in its reading.
‘-—backfill2-depth depth’
Another depth controlling how deeply GNU Go looks for backfilling moves.
The moves tried below backfill2_depth are generally more obscure and
time intensive than those controlled by backfill_depth, so this parameter
has a lower default.
e ‘-F’ ‘-—fourlib-depth depth’
Deep reading cutoff. When reading beyond this depth (default 5) GNU Go
assumes that any string which can obtain 4 liberties is alive.
e ‘-K’ ‘-—ko-depth depth’
Deep reading cutoff. Beyond this depth (default 8) GNU Go no longer
tries very hard to analyze kos.

Chapter 3: Using GNU Go 15

e ‘—-branch-depth depth’

Deep reading cutoff. Below this depth (default 8), GNU Go still tries to
attack strings with only 3 liberties, but only tries one move at each node.

e ‘—-—aa_depth depth’

The reading function atari_atari looks for combinations beginning with
a series of ataris, and culminating with some string having an unexpected
change in status (e.g. alive to dead or critical). This command line optio
sets the parameter aa_depth which determines how deeply this function
looks for combinations.
e ‘—-superstring-depth’

A superstring (see Section 14.5 [Superstrings|, page 135) is an amalgama-
tion of tightly strings. Sometimes the best way to attack or defend a string
is by attacking or defending an element of the superstring. Such tactics
are tried below superstring_depth and this command line option allows
this parameter to be set.

The preceeding options are documented with the reading code (see Section 14.1
[Reading Basics], page 122).
e ‘owl-branch’ Below this depth Owl only considers one move. Default 8.
e ‘owl-reading’ Below this depth Owl assumes the dragon has escaped. Default 20.

e ‘owl-node-limit’ If the number of variations exceeds this limit, Owl assumes the
dragon can make life. Default 10000. We caution the user that increasing owl_node_
limit does not necessarily increase the strength of the program.

e ‘——level amount’

The higher the level, the deeper GNU Go reads. Level 10 is the default. If
GNU Go plays too slowly on your machine, you may want to decrease it.

3.9.4 Ascii Mode Options

‘-—color color’
Choose your color (’black’ or "white’)
‘-—handicap number’

Choose the number of handicap stones (0-9)

3.9.5 Development options:

‘--replay color’

Replay all moves in a game for either or both colors. If used with the
‘-0’ option the game record is annotated with move values. This option
requires ‘-1 filename’. The color can be:

white: replay white moves only
black: replay black moves only
both: replay all moves

When the move found by genmove differs from the move in the sgf file the
values of both moves are reported thus:

Chapter 3: Using GNU Go 16

Move 13 (white): GNU Go plays C6 (20.60) - Game move F4 (20.60) |

This option is useful if one wants to confirm that a change such as an
speedup or other optimization has not affected the behavior of the engine.
Note that when the several moves have the same top value (or nearly equal)
the move generated is not deterministic (though it can be made determin-
istic by starting with the same random seed). Thus a few deviations from
the move in the sgf file are to be expected. Only if the two reported values
differ should we conclude that the engine plays differently from the engine
which generated the sgf file. See Chapter 21 [Regression], page 170.
‘-a’, ‘--—allpats’

Test all patterns, even those smaller in value than the largest move found
so far. This should never affect GNU Go’s final move, and it will make it
run slower. However this can be very useful when "tuning" GNU Go. It
causes both the traces and the output file (‘-0’) to be more informative.

‘-T’, ‘~—printboard’: colored display of dragons.
Use rxvt, xterm or Linux Console. (see Section 5.8 [Colored Display],
page 33)

‘~E’: colored display of eye spaces
Use rxvt, xterm or Linux Console. (see Section 5.8 [Colored Display],
page 33)

‘-d’, ‘--debug level’

Produce debugging output. The debug level is given in hexadecimal, using
the bits defined in the following table from ‘engine/gnugo.h’.

DEBUG_INFLUENCE 0x0001
DEBUG_EYES 0x0002
DEBUG_OWL 0x0004
DEBUG_ESCAPE 0x0008
DEBUG_MATCHER 0x0010
DEBUG_DRAGONS 0x0020
DEBUG_SEMEAT 0x0040
DEBUG_LOADSGF 0x0080
DEBUG_HELPER 0x0100
DEBUG_READING 0x0200
DEBUG_WORMS 0x0400
DEBUG_-MOVE_REASONS 0x0800
‘-H’, ‘~-hash level’
hash (see ‘engine/gnugo.h’ for bits).
‘—w’, ‘--worms’
Print more information about worm data.
‘-m’, ‘--moyo level’

moyo debugging, show moyo board. The level is fully documented else-
where (see Section 5.8 [Colored Display|, page 33).

Chapter 3: Using GNU Go

‘~b’, ‘~-benchmark number’

benchmarking mode - can be used with ‘-1’.
‘-g’, ‘--stack’

stack trace (for debugging purposes).
‘-8’, ‘~-statistics’

Print statistics (for debugging purposes).
‘-t’, ‘-—trace’

Print debugging information. Use twice for more detail.

4 bl

-r’, ‘--seed seed’

Set random number seed. This can be used to guarantee that GNU Go
will make the same decisions on multiple runs through the same game. If
seed is zero, GNU Go will play a different game each time.

‘~-—decide-string location’

Invoke the tactical reading code (see Chapter 14 [Tactical Reading],
page 122 to decide whether the string at location can be captured, and
if so, whether it can be defended. If used with ‘-o’, this will produce a
variation tree in SGF.

‘-—decide-dragon location’

Invoke the owl code (see Section 15.1 [The Owl Code|, page 141) to decide
whether the dragon at location can be captured, and whether it can be
defended. If used with ‘-o’, this will produce a variation tree in SGF.

‘——score method’

Requires ‘-1’. method can be "end", "last", "aftermath" or a move. "end"
and "aftermath" are appropriate when the game is complete, or nearly so,
and both try to supply an accurate final score. The other options may be
used to get an estimate during the middle of the game. Any of these options
may be combined with ‘--chinese-rule’ if you want to use Chinese (Area)
counting.

last

load the sgf file up to the last move, then estimate territory
using the Bouzy 5/21 algorithm (see Chapter 17 [Moyo],
page 152).

end

finish the game by selfplaying from the end of the file until
two passes, then estimate territory using the Bouzy 5/21
algorithm (see Chapter 17 [Moyo], page 152).

aftermath

finish the game by selfplaying from the end of the file until

two passes, then estimate territory using the most accu-

rate scoring algorithm available. Slower than ‘--score

last’, and while these algorithms usually agree, if they

differ, ‘~-score aftermath’ is most likely to be correct.
move, e.g. ‘-—score J17’

load file until move is reached and estimate territorial bal-
ance using the Bouzy 5/21 algorithm. The ‘~-score end’

17

Chapter 3: Using GNU Go 18

and ‘--score aftermath’ options are only useful at or
near the end of the game, so if you want an estimate of
the score in the middle, use this method.

‘——printsgf output file’

load SGF file, output final position (requires ‘-1’) as another SGF file.
Illegal moves are indicated with the private IL property. This property is
not used in the FF4 SGF specification, so we are free to preempt it. This
feature is used in the CGI interface in ‘interface/html/gg.cgi’.

Chapter 4: GNU Go engine overview 19

4 GNU Go engine overview

This chapter is an overview of the GNU Go internals. Further documentation of how
any one module or routine works may be found in later chapters or comments in the source

files.

4.1 Definitions

A worm is a maximal set of vertices on the board which are connected along the horizontal
and vertical lines, and are of the same color, which can be BLACK, WHITE or EMPTY. The term
EMPTY applied to a worm means that the worm consists of empty (unoccupied) vertices. It
does not mean that that the worm is the empty set. A string is a nonempty worm. An
empty worm is called a cavity. If a subset of vertices is contained in a worm, there is a
unique worm containing it; this is its worm closure. (see Section 10.1 [Worms], page 67.)

A dragon is a union of strings of the same color which will be treated as a unit. If two
strings are in the same dragon, it is the computer’s working hypothesis that they will live
or die together and are effectively connected. (see Section 10.7 [Dragons], page 76.)

A superstring is a less commonly used unit which is the union of several strings but gen-
erally smaller than a dragon. The superstring code is in ‘engine/utils.c’. The definition
of a superstring is slightly different if the code is called from ‘owl.c’ or from ‘reading.c’.

4.2 Move Generation Basics

The engine of GNU Go takes a positions and a color to move and generates the (sup-
posedly) optimal move. This is done by the function genmove() in ‘engine/genmove.c’.

The move generation is done in three passes:
1. information gathering
2. different modules propose moves

3. The values of the moves are weighted together and the best move is selected

4.2.1 Information gathering

The information gathering is done by a function examine_position(), which will be
discussed in greater detail in the next section. Such information could be life and death
of the groups, information about moyos, connection of groups and so on. Information
gathering is performed by examine_position, which in turn calls:

e make_worms ()

Collect information about all connected sets of stones (strings) and cavi-
ties. This information is stored in the worm[] [] array. (see Section 10.1
[Worms], page 67)

e compute_initial_influence()

Decides which areas of the board are influenced by which player. This
function is run a second time later at the end of make_dragons(), since

Chapter 4: GNU Go engine overview 20

GNU Go’s opinion about the safety of groups may change, and it is impor-
tant to have the influence function as accurate as possible. see Chapter 16
[Influence], page 145

e make_dragons ()

Collect information about connected strings, which are called dragons. Im-
portant information here is number of eyes, life status, and connectedness
between string. (see Section 10.7 [Dragons|, page 76.)

A more detailed

4.2.2 Move generation in GNU Go 3.0

Once we have found out all about the position it is time to generate the best move.
Moves are proposed by a number of different modules called move generators. The move
generators themselves do not set the values of the moves, but enumerate justifications for
them, called move reasons. The valuation of the moves comes last, after all moves and their
reasons have been generated.

The move generators in version 3.0 are:
e fuseki()
Generate a move in the early fuseki.
e semeai()

Find out if two dead groups of opposite colors are next to each other and,
if so, try to kill the other group. This module will eventually be rewritten
along the lines of the owl code.

e shapes()

Find patterns from ‘patterns/patterns.db’ in the current position. Each
pattern is matched in each of the 8 possible orientations obtainable by
rotation and reflection. If the pattern matches, a so called "constraint"
may be tested which makes use of reading to determine if the pattern should
be used in the current situation. Such constraints can make demands on
number of liberties of strings, life and death status, and reading out ladders,
etc. The patterns may call helper functions, which may be hand coded (in
‘patterns/helpers.c’) or autogenerated.

The patterns can be of a number of different classes with different goals.
There are e.g. patterns which try to attack or defend groups, patterns
which try to connect or cut groups, and patterns which simply try to
make good shape. In addition to the large pattern database called by
shapes (), pattern matching is used by other modules for different tasks
throughout the program. See Chapter 12 [Patterns], page 92, for a complete
documentation of patterns.

e atari_atari()

See if there are any combination threats and either propose them or defend
against them.

e owl_reasons()

The Owl Code (see Section 15.1 [The Owl Code], page 141) which has
been run during examine_position), before owl_reasons() executes, has

Chapter 4: GNU Go engine overview 21

decided whether different groups can be attacked. The module review_
owl_reasons reviews the statuses of every dragon and assigns move reasons
for attack and defense. Unlike the other move generation modules, this one
is called from examine_position().

e endgame_shapes ()

If no move is found with a value greater than 6.0, this module matches a
set of extra patterns which are designed for the endgame. The endgame
patterns can be found in ‘patterns/endgame.db’.

e revise_semeail()

If no move is found, this module changes the status of opponent groups
involved in a semeai from DEAD to UNKNOWN. After this, genmove runs
shapes and endgame_shapes again to see if a new move turns up.

e fill liberty()

Fill a common liberty. This is only used at the end of the game. If necessary
a backfilling or backcapturing move is generated.

4.2.3 Selecting the Move

After the move generation modules have run, the best ten moves are selected by the
function review_move_reasons. This function also does some analysis to try to turn up
other moves which may have been missed. The modules revise_semeai() and fill_
liberty are only run if no good move has been discovered by the other modules.

4.3 Examining the Position

In this section we summarize the sequence of events when examine_position() is run
from genmove (). This is for reference only. Don’t try to memorize it.

purge persistent reading cache (see Section 14.2.5 [Persistent Cache], page 131)
make_worms () (see Section 10.1 [Worms]|, page 67):
build_worms () finds and identifies the worms
compute effective size of each worm
unconditional_life()
find_worm_attacks_and_defenses():
for each attackable worm:
set worm.attack
add_attack_move ()
find_attack_patterns() to find a few more attacks
for each defensible worm
set worm.defend
add_defense_move
if point of attack is not adjacent to worm see if it defends
find_defense_patterns() to find a few more defenses
for each attackable worm try each liberty
if it attacks add_attack_move
if it defends add_defense_move
find kos.

for each worm

Chapter 4: GNU Go engine overview 22

find higher order liberties
find cutting points (worm.cutstone)
for each worm compute the genus (see Section 10.1 [Worms]|, page 67)
small_semeai()
try to improve values of worm.attack and worm.defend
try to repair situations where adjacent worms can be
both attacked and defended
find worm lunches
find worm threats
compute_initial_influence() (see Chapter 16 [Influence], page 145)
compute_influence()
find_influence_patterns()
at each intersection accumulate_influence()
segment_influence ()
make_dragons () (see Section 10.7 [Dragons|, page 76)
initialize dragon data
find the inessential worms
make_domains ()
initialize eye data
compute_primary_domains ()
fill out arrays black_eye and white_eye
describing eyeshapes
find_cuts()
for every eyespace
originate_eye()
count_neighbors|()
find_connections()
amalgamate dragons sharing an eyespace
initialize_supplementary_dragon_data()
find adjacent worms which can be captured (dragon lunches)
find topological half eyes and false eyes
modify_eye_spaces()
for each eye space
compute_eyes ()
store the results in black_eye, white_eye arrays
compute the genus of each dragon
for each dragon
compute_escape ()
resegment_initial_influence()
for each dragon
influence_get_moyo_size()
for each dragon
compute_dragon_status()
find_neighbor_dragons ()
purge_persistent_owl_cache()
for each dragon which seems surrounded
try owl_attack() and owl_defend()
if appropriate find owl threats
for each dragon

Chapter 4: GNU Go engine overview 23

set dragon.matcher_status
for each dragon
set dragon2.safety
semeai()
revise opinion of which worms are inessential
count non-dead dragons of each color
owl_reasons() (see Section 15.1 [The Owl Code], page 141)
compute_initial_influence() again (see Chapter 16 [Influence], page 145)

4.4 Sequence of Events

In this section we summarize the sequence of events during the move generation and
selection phases of genmove (), which take place after the information gathering phase has
been completed.

fuseki()

shapes ()

review_move_reasons ()
find_more_attack_and_defense_moves()
remove_opponent_attack_and_defense_moves()
do_remove_false_attack_and_defense_moves()
examine_move_safety()
induce_secondary_move_reasons ()
value_moves ()
find the ten best moves

if the value of the best move is < 6.0
endgame_shapes ()

if no move found yet
revise_semeai()
shapes ()
endgame_shapes ()

if still no move found
£ill_liberty()

if still no move found

pass

4.5 Roadmap

The GNU Go engine is contained in two directories, ‘engine/’ and ‘patterns/’. Code
related to the user interface, reading and writing of smart go format files and testing are
found in the directories ‘interface/’, ‘sgf/’, and ‘regression/’. Code borrowed from
other GNU programs is contained in ‘utils/’. Documentation is in ‘doc/’.

In this document we will describe some of the individual files comprising the engine code
in ‘engine/’ and ‘patterns/’. In ‘interface/’ we mention two files:

an,lp . C’
This is the Go Modem Protocol interface (courtesy of William Shubert and
others). This takes care of all the details of exchanging setup and moves
with Cgoban, or any other driving program recognizing the Go Modem
Protocol.

Chapter 4: GNU Go engine overview

‘main.c’
This contains main (). The ‘gnugo’ target is thus built in the ‘interface/’
directory.

4.5.1 Files in ‘engine/’

In ‘engine/’ there are the following files:
e ‘aftermath.c’

Contains algorithms which may be called at the end of the game to generate
moves that will generate moves to settle the position, if necessary playing
out a position to determine exactly the status of every group on the board,
which GNU Go can get wrong, particularly if there is a seki. This module
is the basis for the most accurate scoring algorithm available in GNU Go.

e ‘board.c’

This file contains code for the maintenance of the board. For example
it contains the important function trymove() which tries a move on the
board, and popgo () which removes it by popping the move stack. At the
same time vital information such as the number of liberties for each string
and their location is updated incrementally.

e ‘clock.c’

Clock code, including code allowing GNU Go to automatically adjust its
level in order to avoid losing on time in tournaments.

e ‘dragon.c’

This contains make_dragons (). This function is executed before the move-
generating modules shapes() semeai() and the other move generators
but after make_worms. It tries to connect worms into dragons and collect
important information about them, such as how many liberties each has,
whether (in GNU Go’s opinion) the dragon can be captured, if it lives, etc.

e ‘fuseki.c’
Generates fuseki (opening) moves from a database.

e ‘filllib.c’
Code to force filling of dame (backfilling if necessary) at the end of the
game.

e ‘genmove.c’

This file contains genmove() and its supporting routines, particularly
examine_position().

e ‘globals.c’

This contains the principal global variables used by GNU Go.
e ‘gnugo.h’

This file contains declarations forming the public interface to the engine.
e ‘hash.c’ and ‘cache.c’

Hashing code implementing Zobrist hashing. (see Section 14.2 [Hashing],
page 125) The code in ‘hash.c’ provides a way to hash board positions
into compact descriptions which can be efficiently compared. The code in

Chapter 4: GNU Go engine overview

‘cache.c’ implements a kind of database for storing reading results, so they
can be quickly retrieved. The caching code uses the board hashes as keys
to the database. They are split since these functionalities are sufficiently
demarked that either file could be reimplemented without affecting the
other one. Note also that matchpat () uses the hashing code without also
using the caching code.

e ‘hash.h’ and ‘cache.h’
Header files for hash.c and cache.c.
e ‘influence.c’ and ‘influence.h’.

This code determines which regions of the board are under the influence
of either player. (see Chapter 16 [Influence|, page 145)

e ‘liberty.h’
Header file for the engine. The name “liberty” connotes freedom (see Ap-
pendix A [Copying], page 173).

e ‘life.C’
The code in this file contains an alternative approach to life and death
based on reading instead of the static approach in ‘optics.c’. This code

is experimental. It is reasonably accurate but too slow. It is activated
when gnugo is invoked with the ‘~-1ife’ option.

e ‘matchpat.c’

This file contains the pattern matcher matchpat (), which looks for patterns
at a particular board location. The actual patterns are in the ‘patterns/’
directory. The function matchpat () is called by every module which does
pattern matching, notably shapes.

e ‘move_reasons.c’

This file contains the code which assigns values to every move after all the
move reasons are gen

e ‘optics.c’

This file contains the code to recognize eye shapes, documented in See
Chapter 11 [Eyes], page 82.

e ‘owl.c’

This file does life and death reading. The paradigm is that moves are
played by both players trying to expand and shrink the eyespace until a
static configuration is reached where it can be analyzed by the code in
‘optics.c’ or ‘life.c’.

e ‘printutils.c’
Print utilities

e ‘reading.c’
This file contains code to determine whether any given string can be at-

tacked or defended. See Chapter 14 [Tactical Reading], page 122, for de-
tails.

e ‘score.c’

Implements the Bouzy algorithms (see Chapter 17 [Moyo], page 152) and
contains code for scoring the game.

25

Chapter 4: GNU Go engine overview 26

e ‘semeai.c’

This file contains semeai (), the module which tries to win capturing races.
This module does not work particularly well and will eventually be re-
placed.

e ‘shapes.c’

This file contains shapes(), the module called by genmove () which tries
to find moves which match a pattern (see Chapter 12 [Patterns|, page 92).

e ‘showbord.c’

This file contains showboard(), which draws an ASCII representation of
the board, depicting dragons (stones with same letter) and status (color).
This was the primary interface in GNU Go 1.2, but is now a debugging
aid.

e ‘worm.c’

This file contains make_worms (), code which is run at the beginning of each
move cycle, before the code in ‘dragon.c’, to determine the attributes of
every string. These attributes are things like liberties, wether the string
can be captured (and how), etc

e ‘utils.c’

An assortment of utilities, described in greater detail below.

4.5.2 Files in ‘patterns/’

The directory ‘patterns/’ contains files related to pattern matching. Currently there
are several types of patterns. A partial list:

e move generation patterns in ‘patterns.db’ and ‘patterns2.db’

e move generation patterns in files ‘hoshi.db’ etc. which are automatically build from
the files ‘hoshi.sgf’ etc. These comprise our small Joseki library.

e patterns in ‘owl_attackpats.db’, ‘owl_defendpats.db’ and ‘owl_vital_apats.db’.
These generate moves for the owl code (see Section 15.1 [The Owl Code], page 141).

e Connection patterns in ‘conn.db’ (see Section 12.9 [Connections Database], page 104)
e Influence patterns in ‘influence.db’ and ‘barriers.db’ (see Chapter 16 [Influence],
page 145)
e eye patterns in ‘eyes.db’ (see Chapter 11 [Eyes|, page 82).
The following list contains, in addition to distributed source files some intermediate
automatically generated files such as patterns.c. These are C source files produced by
"compiling" various pattern databases, or in some cases (such as ‘hoshi.db’) themselves

automatically generated pattern databases produced by "compiling" joseki files in Smart
Go Format.

e ‘conn.db’:
Database of connection patterns.
e ‘conn.c’:

Automatically generated file, containing connection patterns in form of
struct arrays, compiled by mkpat from ‘conn.db’.

Chapter 4: GNU Go engine overview

‘eyes.c’:
Automatically generated file, containing eyeshape patterns in form of struct
arrays, compiled by mkpat from ‘eyes.db’.
‘eyes.h’”:
Header file for ‘eyes.c’.
‘eyes.db’:
Database of eyeshape patterns. See Chapter 11 [Eyes|, page 82, for details.
‘helpers.c’:
These are helper functions to assist in evaluating moves by matchpat.
‘hoshi.sgf’:
Smart Go Format file containing 4-4 point openings
‘hoshi.db”:
Automatically generated database of 4-4 point opening patterns, make by
compiling ‘hoshi.sgf’
‘joseki.c’:
Joseki compiler, which takes a joseki file in Smart Go Format, and produces
a pattern database.
‘komoku.sgf’:
Smart Go Format file containing 3-4 point openings
‘komoku.db’:
Automatically generated database of 3-4 point opening patterns, make by
compiling ‘komoku.sgf’
‘mkeyes.c’:
Pattern compiler for the eyeshape databases. This program takes ‘eyes.db’
as input and produces ‘eyes.c’ as output.
‘mkpat.c’:
Pattern compiler for the move generation and connection databases. Takes
the file patterns.db together with the autogenerated Joseki pattern files

hoshi.db, komoku.db, sansan.db, ‘mokuhadzushi.db’, ‘takamoku.db’ and
produces ‘patterns.c’, or takes ‘conn.db’ and produces ‘conn.c’.

‘mokuhazushi.sgf’:

Smart Go Format file containing 5-3 point openings
‘mokuhazushi.db’:

Pattern database compiled from mokuhadzushi.sgf
‘sansan.sgf’:

Smart Go Format file containing 3-3 point openings
‘sansan.db’:

Pattern database compiled from ‘sansan.sgf’
‘takamoku.sgf’:

Smart Go Format file containing 5-4 point openings
‘takamoku.db’:

Pattern database compiled from takamoku.sgf.

Chapter 4: GNU Go engine overview 28

e ‘patterns.c’:
Pattern data, compiled from patterns.db by mkpat.
e ‘patterns.h’:
Header file relating to the pattern databases.
e ‘patterns.db’ and ‘patterns2.db’:
These contain pattern databases in human readable form.

4.6 Coding styles and conventions

4.6.1 Coding Conventions

Please follow the coding conventions at: http://www.gnu.org/prep/standards_
toc.html

Please preface every function with a brief description of its usage.

Please help to keep this Texinfo documentation up-to-date.

4.6.2 Tracing

A function gprintf () is provided. It is a cut-down printf, supporting only %c, %d, %s,
and without field widths, etc. It does, however, add some useful facilities:

o m:
Takes two parameters, and displays a formatted board co-ordinate.

e indentation:
Trace messages are automatically indented to reflect the current stack
depth, so it is clear during read-ahead when it puts a move down or takes
one back.

e "outdent":

As a workaround, %o at the beginning of the format string suppresses the
indentation.

A variant mprintf sends output to stderr. Normally gprintf () is wrapped in one of
the following:

TRACE(fmt, ...):

Print the message if the 'verbose’ variable > 0. (verbose is set by -t on the
command line)
DEBUG(flags, fmt, ...):

While TRACE is intended to afford an overview of what GNU Go is considering,
DEBUG allows occasional in depth study of a module, usually needed when some-
thing goes wrong. flags is one of the DEBUG_* symbols in ‘engine/gnugo.h’.
The DEBUG macro tests to see if that bit is set in the debug variable, and prints
the message if it is. The debug variable is set using the ~d command-line option.

The variable verbose controls the tracing. It can equal 0 (no trace), 1, 2, 3 or 4 for
increasing levels of tracing. You can set the trace level at the command line by ‘-t’ for
verbose=1, ‘-t -t’ for verbose=2, etc. But in practice if you want more verbose tracing

Chapter 4: GNU Go engine overview 29

than level 1 it is better to use gdb to reach the point where you want the tracing; you will
often find that the variable verbose has been temporarily set to zero and you can use the
gdb command set var verbose=1 to turn the tracing back on.

4.6.3 Assertions

Related to tracing are assertions. Developers are strongly encouraged to pepper their
code with assertions to ensure that data structures are as they expect. For example, the
helper functions make assertions about the contents of the board in the vicinity of the move
they are evaluating.

ASSERT() is a wrapper around the standard C assert() function. In addition to the
test, it takes an extra pair of parameters which are the co-ordinates of a "relevant" board
position. If an assertion fails, the board position is included in the trace output, and
showboard() and popgo() are called to unwind and display the stack.

4.6.4 FIXME

We have adopted the convention of putting the word FIXME in comments to denote
known bugs, etc.

4.7 Navigating the Source

If you are using Emacs, you may find it fast and convenient to use Emacs’ built-in
facility for navigating the source. Switch to the root directory ‘gnugo-3.0.x/’ and execute
the command:

find . -printlgrep "\.[ch]$"|xargs etags

This will build a file called ‘gnugo-3.0.x/TAGS’. Now to find any GNU Go function,
type M-. and enter the command which you wish to find, or just RET if the cursor is at the
name of the function sought.

The first time you do this you will be prompted for the location of the TAGS table. Enter
the path to ‘gnugo-3.0.x/TAGS’, and henceforth you will be able to find any function with
a minimum of keystrokes.

Chapter 5: Analyzing GNU Go’s moves 30

5 Analyzing GNU Go’s moves

In this chapter we will discuss methods of finding out how GNU Go understands a given
position. These methods will be of interest to anyone working on the program, or simply
curious about its workings.

We assume that you have a game GNU Go played saved as an sgf file, and you want to
know why it made a certain move.

5.1 Interpreting Traces

A quick way to find out roughly the reason for a move is to run
gnugo -1 filename -t -L move number

(You may also want to add ‘--quiet’ to suppress the copyright message.) In GNU Go
3.0, the moves together with their reasons are listed, followed by a numerical analysis of
the values given to each move.

If you are tuning (see Section 12.11 [Tuning], page 106) you may want to add the ‘-a’
option. This causes GNU Go to report all patterns matched, even ones that cannot affect
the outcome of the move. The reasons for doing this is that you may want to modify a
pattern already matched instead of introducing a new one.

¢

If you use the ‘-w’ option, GNU Go will report the statuses of dragons around the
board. This type of information is available by different methods, however (see Section 5.6
[Debugboard], page 32, see Section 5.8 [Colored Display], page 33).

5.2 The Output File

If GNU Go is invoked with the option ‘-0 filename’ it will produce an output file. This
option can be added at the command line in the Go Modem Protocol Setup Window of
CGoban. The output file will show the locations of the moves considered and their weights.
It is worth noting that by enlarging the CGoban window to its fullest size it can display 3
digit numbers. Dragons with status DEAD are labelled with an ‘X’, and dragons with status
CRITICAL are labelled with a ‘!’

If you have a game file which is not commented this way, or which was produced by a
non-current version of GNU Go you may ask GNU Go to produce a commented version by
running:

gnugo --quiet -1 <old file> --replay <color> -o <new file>

Here <color> can be "black,” 'white’ or ’both’. The replay option will also help you to find
out if your current version of GNU Go would play differently than the program that created
the file.

5.3 Checking the reading code

The ‘--decide-string’ option is used to check the tactical reading code (see Chapter 14
[Tactical Reading], page 122). This option takes an argument, which is a location on the
board in the usual algebraic notation (e.g. ‘--decide-string C17’). This will tell you
whether the reading code (in ‘engine/reading.c’) believes the string can be captured, and

Chapter 5: Analyzing GNU Go’s moves 31

if so, whether it believes it can be defended, which moves it finds to attack or defend the
move, how many nodes it searched in coming to these conclusions. Note that when GNU Go
runs normally (not with ‘--decide-string’) the points of attack and defense are computed
when make_worms () runs and cached in worm.attack and worm.defend.

If used with an output file (‘-o filename’) ‘--decide-string’ will produce a variation
tree showing all the variations which are considered. This is a useful way of debugging the
reading code, and also of educating yourself with the way it works. The variation tree can
be displayed graphically using CGoban.

At each node, the comment contains some information. For example you may find a
comment:

attack4-B at D12 (variation 6, hash 51180fdf)
break_chain D12: 0
defend3 D12: 1 G12 (trivial extension)

This is to be interpreted as follows. The node in question was generated by the function
attack3() in ‘engine/reading.c’, which was called on the string at D12. Of the data in
parentheses tells you the values of count_variations and hashdata.hashval.

The second value (“hash”) you probably will not need to know unless you are debugging
the hash code, and we will not discuss it. But the first value (“variation”) is useful when
using the debugger gdb. You can first make an output file using the ‘-0’ option, then walk
through the reading with gdb, and to coordinate the SGF file with the debugger, display
the value of count_variations. Specifically, from the debugger you can find out where
you are as follows:

(gdb) set dump_stack()
B:D13 W:E12 B:E13 W:F12 B:F11 (variation 6)

If you place yourself right after the call to trymove() which generated the move in
question, then the variation number in the SGF file should match the variation number
displayed by dump_stack (), and the move in question will be the last move played (F11 in
this example).

This displays the sequence of moves leading up to the variation in question, and it also
prints count_variations-1.

The second two lines tell you that from this node, the function break_chain() was called
at D12 and returned 0 meaning that no way was found of rescuing the string by attacking
an element of the surrounding chain, and the function defend3() was called also at D12
and returned 1, meaning that the string can be defended, and that G12 is the move that
defends it. If you have trouble finding the function calls which generate these comments,
try setting sgf_dumptree=1 and setting a breakpoint in sgf_trace.

5.4 Checking the Owl code

3

You can similarly debug the Owl code using the option ‘--decide-dragon’. Usage
is entirely similar to ‘--decide-string’, and it can be used similarly to produce varia-
tion trees. These should be typically much smaller than the variation trees produced by
‘-—decide-string’ .

Chapter 5: Analyzing GNU Go’s moves 32

5.5 GTP and GDB techniques

You can use the Go Text Protocol (see Chapter 20 [GTP], page 164) to determine
the statuses of dragons and other information needed for debugging. The GTP command
dragon_data P12 will list the dragon data of the dragon at P12 and worm_data will list the
worm data; other GTP commands may be useful as well.

You can also conveniently get such information from GDB. A suggested ‘.gdbinit’ file
may be found in See Section 14.7 [Debugging], page 138. Assuming this file is loaded, you
can list the dragon data with the command:

(gdb) dragon P12

Similarly you can get the worm data with worm P12.

5.6 Debugboard

A useful utility called debugboard is made in the ‘interface/debugboard/’ directory.
This can be run in an Xterm. Use a smaller font since it requires 50 rows and 80 columns.
This runs examine_position(), then makes a graphical display of the board. Using the
cursor movement keys, you can move around the board and find out the contents of the
worm, dragon and eye arrays.

5.7 Scoring the game

GNU Go can score the game. If done at the last move, this is usually accurate unless
there is a seki. Normally GNU Go will report its opinion about the score at the end of the
game, but if you want this information about a game stored in a file, use the ‘--score’
option.

gnugo --score last -1 filename

loads the sgf file to the end of the file and estimates the winner after the last stored move
by estimating the territory.

gnugo --score end -1 filename

loads the sgf file and GNU Go continues to play after the last stored move by itself up to
the very end. Then the winner is determined by estimating the territory.

gnugo --score aftermath -1 filename

loads the sgf file and GNU Go continues to play after the last stored move by itself up to
the very end. Then the winner is determined by the most accurate algorithm available.
Slower but more accurate than ‘--score end’.

gnugo --score L10 -1 filename

loads the sgf file until a stone is placed on L10. Now the winner will be estimated as with
gnugo —-score last.

Any of these commands may be combined with ‘--chinese-rules’ if you want to use
Chinese (area) counting.

gnugo --score 100 -1 filename

loads the sgf file until move number 100. Now the winner will be estimated as with gnugo
--score last.

Chapter 5: Analyzing GNU Go’s moves 33

If the option ‘-o outputfilename’ is provided, the results will also be written as comment
at the end of the output file.

5.8 Colored Display

Various colored displays of the board may be obtained in a color xterm or rxvt window.
Xterm will only work if xterm is not compiled with color support. If the colors are not
displayed on your xterm, try rxvt. You may also use the Linux console. The colored
display will work best if the background color is black; if this is not the case you may want
to edit your ‘.Xdefaults’ file or add the options ‘~bg black -fg white’ to xterm or rxvt.

5.8.1 Dragon Display

You can get a colored ASCII display of the board in which each dragon is assigned a dif-
ferent letter; and the different matcher_status values (ALIVE, DEAD, UNKNOWN, CRITICAL)
have different colors. This is very handy for debugging. Actually two diagrams are gen-
erated. The reason for this is concerns the way the matcher status is computed. The
dragon_status (see Section 10.7 [Dragons|, page 76) is computed first, then for some, but
not all dragons, a more accurate owl status is computed. The matcher status is the owl sta-
tus if available; otherwise it is the dragon_status. Both the dragon_status and the owl_status
are displayed. The color scheme is as follows:

green = alive

cyan = dead

red = critical
yellow = unknown
magenta = unchecked

To get the colored display, save a game in sgf format using CGoban, or using the ‘-0’
option with GNU Go itself.

Open an xterm or rxvt window.

Execute gnugo -1 [filename] -L [movenum] -T to get the colored display.

Other useful colored displays may be obtained by using instead:

5.8.2 Eye Space Display

Instead of ‘-T’, try this with ‘-E’. This gives a colored display of the eyespaces, with
marginal eye spaces marked ‘!’ (see Chapter 11 [Eyes]|, page 82).

5.8.3 Moyo Display

The option ‘-m level’ can give colored displays of the various quantities which are com-
puted in ‘engine/moyo.c’.

The moyos found by GNU Go can be displayed from an xterm or rxvt window or from
the Linux console using the ‘-m’ option. This takes a parameter:

‘-m level’
use or (hexadecimal) cumulative values for printing these reports :

Chapter 5: Analyzing GNU Go’s moves 34

128

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

ascii printing of territorial evaluation (5/21)
ascii printing of moyo evaluation (5/10)

ascii printing of area (4/0)

print initial moyo influence

print influence

numeric influence

moyo strength

moyo attenuation

The first three options are somewhat superceded because these data are no longer used

by the engine.

These options can be combined by adding the levels. Levels 16, 32, 64 and 128 don’t do
much unless you also specify level 8. Thus one might use the hexadecimal option ‘-m0x018’
if you want to see the influence function displayed graphically.

See Chapter 17 [Moyo|, page 152, for the first three items.
See Section 16.7 [Influential Display|, page 150, for the last five items.

Chapter 6: Application Programmers Interface to GNU Go 35

6 Application Programmers Interface to GNU Go

If you want to write your own interface to GNU Go, or if you want to create a go
application using the GNU Go engine, this chapter is of interest to you.

First an overview: GNU Go consists of two parts: the GNU Go engine and a program
(user interface) which uses this engine. These are linked together into one binary. The
current program implements the following user modes:

e An interactive board playable on ASCII terminals

e solo play - GNU Go plays against itself

e replay - a mode which lets the user investigate moves in an existing SGF file.

e GMP - Go Modem Protocol, a protocol for automatic play between two computers.

e GTP - Go Text Protocol, a more general go protocol currently used only for testing
of the engine. However, GTP is currently being standardized and it is expected that
GTP will become the main choice for tasks where currently GMP is used.

The GNU Go engine can be used in other applications. For example, supplied with
GNU Go is another program using the engine, called ‘debugboard’, in the directory
‘interface/debugboard/’. The program debugboard lets the user load SGF files and can
then interactively look at different properties of the position such as group status and eye
status.

The purpose of this Chapter is to show how to interface your own program such as
debugboard with the GNU Go engine.

Figure 1 describes the structure of a program using the GNU Go engine.

- Fomm - o +
| | | |
| | Game | |
| | handling | |
| | | |
| o + |
| SGF | Move |
| handling | generation |
|

+

Figure 1: The structure of a program using the GNU Go engine

The foundation is a library called libboard.a which provides efficient handling of a go
board with rule checks for moves, with incremental handling of connected strings of stones
and with methods to efficiently hash go positions.

Chapter 6: Application Programmers Interface to GNU Go 36

On top of this, there is a library which helps the application use smart go files, SGF
files, with complete handling of game trees in memory and in files. This library is called
libsgf.a

The main part of the code within GNU Go is the move generation library which given
a position generates a move. This part of the engine can also be used to manipulate a go
position, add or remove stones, do tactical and strategic reading and to query the engine
for legal moves. These functions are collected into libengine.a.

The game handling code helps the application programmer keep tracks of the moves in
a game, and to undo or redo moves. Games can be saved to SGF files and then later be
read back again. These are also within libengine.a.

The resposibility of the application is to provide the user with a user interface, graphical
or not, and let the user interact with the engine.

6.1 How to use the engine in your own program: getting
started

To use the GNU Go engine in your own program you must include the file ‘gnugo.h’.
This file describes the whole public API. There is another file, ‘1iberty.h’, which describes
the internal interface within the engine. If you want to make a new module within the
engine, e.g. for suggesting moves you will have to include this file also. In this section we
will only describe the public interface.

Before you do anything else, you have to call the function init_gnugo (). This function
initializes everything within the engine. It takes one parameter: the number of megabytes
the engine can use for the internal hash table. In addition to this the engine will use a few
megabytes for other purposes such as data describing groups (liberties, life status, etc), eyes
and so on.

6.2 Basic Data Structures in the Engine

There are some basic definitions in gnugo.h which are used everywhere. The most
important of these are the numeric declarations of colors. Each intersection on the board
is represented by one of these:

color value
EMPTY 0
WHITE 1
BLACK 2

In addition to these, the following values can be used in special places, such as describing
the borders of eyes:

color value
GRAY (GRAY_BORDER) 3
WHITE_BORDER 4

BLACK_BORDER 5

Chapter 6: Application Programmers Interface to GNU Go 37

There is a macro, 0OTHER_COLOR (color) which can be used to get the other color than
the parameter. This macro can only be used on WHITE or BLACK, but not on EMPTY or one
of the border colors.

6.3 The Position Struct

The basic data structure in the interface to the engine is the Position. A Position is
used to store the current position of a game including the location of all black and white
stones, a possible ko, and the number of captured stones on each side. Here is the definition
of Position:

typedef unsigned char Intersection;

typedef struct {

int boardsize;

Intersection board[MAX_BOARD] [MAX_BOARD];
int ko_1i;

int ko_j;

int last_i[2];

int last_j[2];

float komi;

int white_captured;

int black_captured;

} Position;

Here Intersection stores EMPTY, WHITE or BLACK. It is currently defined as an unsigned
char to make it reasonably efficient in both storage and access time. The position stores
a two-dimensional array of Intersections with the size MAX_BOARD. MAX_BOARD is the value
of the biggest board size that the engine supports; it is currently set to 21. There is also a
MIN_BOARD which is set to 3.

To indicate what board size is actually used, there is a member, boardsize, which should
be in the range between MIN_BOARD and MAX_BOARD.

A location on the board is represented by a pair of integers in the range [O ...
boardsize-1]. The convention used within GNU Go is that the first integer indicates the
row number from the top and the second integer indicates the column number from the
left. Thus the coordinate (2,5) is F5 (A) in the small diagram below.

Chapter 6: Application Programmers Interface to GNU Go 38

ABCDETFG

=N W oo N
N W oo N

ABCDETFG
A pass move is represented by the pair (-1,-1). A convention within the code is to use

the suffix ‘i’ and ‘j’ for the first and the last coordinate.

If there is a ko present on the board, that is if one stone was captured the last move
and the capturing stone can be recaptured, the pair (ko_i, ko_j) points at the empty
intersection where the stone was just captured (‘a’ in the diagram below).

ABCDEFG

BN WD oo N
o

. m . .

. o .

BN WD oo N

ABCDETFG
If no ko is present, ko_i should be set to -1.

The last two moves played are stored in (last_i[], last_j[1).

As the game progresses the number of prisoners on each side are maintained in the
members white_captured and black_captured.

The komi used in the ongoing game is also stored in the Position. The reason for this
is that in some instances, GNU Go plays differently whether it is ahead, behind or the
position is even. So the komi is an important input to the move generation.

6.4 Functions which manipulate a Position

All the functions in the engine that manipulate Positions have names prefixed by gnugo_.
Here is a complete list, as defined in ‘gnugo.h’:

6.4.1 Functions which manipulate the go position

void gnugo_clear_position(Position *pos, int boardsize, float komi)

Clear the position setting the board size to boardsize and the komi to
komi.

Chapter 6: Application Programmers Interface to GNU Go

void gnugo_copy_position(Position *dest, Position *src)
Copy position src to position dest. This is the same convention that is
used in memcpy (3).

void gnugo_add_stone(Position *pos, int i, int j, int color)
Add a stone of color at (i,j) to the position.

void gnugo_remove_stone(Position *pos, int i, int j)
Remove the stone at (i,j) from the position. No check is done that there
actually is a stone there.

void gnugo_play_move(Position *pos, int i, int j, int color)
Play a stone of color color at (i, j) in the position removing captured
stones if any. No check is done if the move is legal; to do that, call gnugo_
is_legal (). Suicide is legal.

int gnugo_play_sgfnode(Position *pos, SGFNode *node, int to_move)

Place all the stones in and play all the moves in the SGF node node (see
Chapter 7 [SGF], page 43.) Return whose turn it is to move after this is
done.

int gnugo_play_sgftree(Position *pos, SGFNode *root, int *until, SGFNode

*xcurnode)
Clear the position and play through the moves in SGF tree root until the
move number until has been reached. Return whose turn it is to move
after this is done. The parameter curnode will be set to the current node
in the tree, i.e. the one which was played last.

int gnugo_is_legal(Position *pos, int i, int j, int color)
Return 1 if the move at (i,j) would be legal; otherwise return 0. The rule
set used is standard japanese rules where suicide is illegal. If there is a ko
point set (ko_i != -1), then the ko point is also illegal to play on.

int gnugo_is_suicide(Position *pos, int i, int j, int color)
Return 1 if the move at (i,j) would be suicide; otherwise return 0.

int gnugo_placehand(Position *pos, int handicap)

Sets up handicap stones, returning the number of placed handicap stones.
Maximum handicap supported is 0 for board sizes below 7, 4 for board
sizes 7 or 8 and 9 for board sizes from 9 and up.

int gnugo_sethand(Position *pos, int handicap, struct SGFNode_t *root)

Sets up handicap pieces and returns the number of placed handicap stones,

updating the SGF file.
void gnugo_recordboard(Position *pos, struct SGFNode_t *node)

Records the position in the SGF node (see Chapter 7 [SGF]|, page 43).
int gnugo_genmove (Position *pos, int *i, int *j, int color, int move_
number)

Generate a move for color color and return it in (*i,*j). The parameter

move_number is the number of the current move. This is mostly used for

debugging reasons, as the game handling functions all work on top of the

move generation part of the engine. (see Section 4.2 [Move Generation
Basics|, page 19.).

Chapter 6: Application Programmers Interface to GNU Go 40

float gnugo_estimate_score(Position *pos, float *upper, float *lower)

Evaluate the approximate score. The score is given as an interval with
a lower and upper bound. A positive score means that white is leading,
while a negative score is good for black. When the lower bound is esti-
mated, CRITICAL dragons are awarded to white; when estimating the
lower bound, they are awarded to black.

The estimation is returned through the pointers *upper and *lower, and
the mean between them is returned as the functions value.

void gnugo_who_wins(Position *pos, int color, FILE *outfile)

Score the game and determine the winner.

6.4.2 Status functions

These functions examines the position in different ways and tells the status of groups
and other items.

int gnugo_attack(Position *pos, int m, int n, int *i, int *j)

Calls the tactical reading function attack to determine whether the string
at (m, n) can be captured (see Chapter 14 [Tactical Reading], page 122).

int gnugo_find_defense(Position *pos, int m, int n, int *i, int *j)

Calls the tactical reading function find_defense to determine whether

the string at (m, n) can be rescued (see Chapter 14 [Tactical Reading],
page 122).

6.4.3 Special functions

These functions are only used in special situations, such as when the program wants
to access internal data structures within the engine. They should only be used when the
programmer has a good knowledge of the internals of GNU Go.

void gnugo_force_to_globals(Position *pos)

Put the values in pos into the global variables which is the equivalent of
the Position.

void gnugo_examine_position(Position *pos, int color, int how_much)

Calls examine_position(), doing much prelimary analysis of the board
position (see Section 4.2 [Move Generation Basics|, page 19).

6.5 Game handling

The functions (in see Section 6.4 [Positional Functions|, page 38) are all that are needed
to create a fully functional go program. But to make the life easier for the programmer,
there is a small set of functions specially designed for handling ongoing games.

The data structure describing an ongoing game is the Gameinfo. It is defined as follows:

Chapter 6: Application Programmers Interface to GNU Go 41

typedef struct {
int handicap;

Position position;

int move_number;

int to_move; /* whose move it currently is */
SGFTree moves; /* The moves in the game. */

int seed; /* random seed */

int computer_player; /* BLACK, WHITE, or EMPTY (used as BOTH) */
char outfilename[128]; /* Trickle file */

FILE *xoutfile;

} Gameinfo;

The meaning of handicap should be obvious. The position field is of course the current
position, move_number is the number of the current move and to_move is the color of the
side whose turn it is to move.

The SGF tree moves is used to store all the moves in the entire game, including a header
node which contains, among other things, komi and handicap. If a player wants to undo a
move, this can most easily be done by replaying all the moves in the tree except for the last
one. This is the way it is implemented in gameinfo_undo_move ().

If one or both of the opponents is the computer, the fields seed and computer_player
are used. Otherwise they can be ignored. seed is used to store the number used to seed the
random number generator. Given the same moves from the opponent, GNU Go will try to
vary its game somewhat using a random function. But if the random generator is given the
same seed, GNU Go will always play the same move. This is good, e.g. when we debug the
engine but could also be used for other purposes.

GNU Go can use a trickle file to continuously save all the moves of an ongoing game. This
file can also contain information about internal state of the engine such as move reasons for
various locations or move valuations for the 10 highest valued moves. The name of this file
should be stored in outfilename and the file pointer to the open file is stored in outfile.
If no trickle file is used, outfilename [0] will contain a null character and outfile will be
set to NULL.

6.5.1 Functions which manipulate a Gameinfo

All the functions in the engine that manipulate Gameinfos have names prefixed by
gameinfo_. Here is a complete list, as defined in ‘gnugo.h’:

void gameinfo_clear(Gameinfo *ginfo, int boardsize, float komi)

Clear the Gameinfo to an empty state. The board size of the Position is
set to boardsize.

void gameinfo_print(Gameinfo *ginfo)

Print the Gameinfo on stdout. This is mostly a debug tool.

Chapter 6: Application Programmers Interface to GNU Go

void gameinfo_load_sgfheader(Gameinfo *ginfo, SGFNode *head)
Load header information from the SGF node head and set the appropriate
variables in ginfo.

void gameinfo_play_move(Gameinfo *ginfo, int i, int j, int color)
Play a move at (i, j), record it in moves, print it to the trickle file if any
and update move_number and to_move.

void gameinfo_undo_move(Gameinfo *ginfo)

Replays all the moves of the game except the last one. It also updates
move_number, to_move and moves. If there is a trickle file, it is truncated
to the second to last move.

FIXME: Not yet implemented.
int gameinfo_play_sgftree(Gameinfo *ginfo, SGFNode *head, const char
*untilstr)
Read header information and play the main variation in the SGF tree
starting with head. Return whose turn it is to move after this is done.

The parameter untilstr is an optional string of the form 'L12’ (a board
position) or ’120’ (a move number) which tells the function to stop playing
at that move or move number.

42

Chapter 7: Handling SGF trees in memory 43

7 Handling SGF trees in memory

SGF - Smart Game Format - is a file format which is used for storing game records for
a number of different games, among them chess and go. The format is a framework with
special adaptions to each game. This is not a description of the file format standard. Too
see the exact definition of the file format, see http://www.red-bean.com/sgf/.

GNU Go contains a library to handle go game records in the SGF format in memory
and to read and write SGF files. This library - 1libsgf.a - is in the sgf subdirectory. To
use the SGF routines, include the file sgftree.h.

Each game record is stored as a tree of nodes, where each node represents a state of the
game, often after some move is made. Each node contains zero or more properties, which
gives meaning to the node. There can also be a number of child nodes which are different
variations of the game tree. The first child node is the main variation.

Here is the definition of SGFNode, and SGFProperty, the data structures which are used
to encode the game tree.

typedef struct SGFProperty_t {
struct SGFProperty_t *next;
short name;
char value[1];

} SGFProperty;

typedef struct SGFNode_t {
SGFProperty *props;
struct SGFNode_t *parent;
struct SGFNode_t *child;
struct SGFNode_t *next;

} SGFNode;

Each node of the SGF tree is stored in an SGFNode struct. It has a pointer to a linked
list of properties (see below) called props. It also has a pointer to a linked list of children,
where each child is a variation which starts at this node. The variations are linked through
the next pointer and each variation continues through the child pointer. Each and every
node also has a pointer to its parent node (the parent field), except the top node whose
parent pointer is NULL.

An SGF property is encoded in the SGFPoperty struct. It is linked in a list through
the next field. A property has a name which is encoded in a short int. Symbolic names of
properties can be found in ‘sgf_properties.h’.

Some properties also have a value, which could be an integer, a floating point value, a
character or a string. These values can be accessed or set through special functions (see

below).

Chapter 7: Handling SGF trees in memory 44

7.1 Functions which manipulate SGF nodes and properties

All the functions which create and manipulate SGF trees are prefixed by sgf. The SGF
code was donated to us by Thomas Traber, so they don’t follow the naming conventions of

GNU Go perfectly.

7.1.1 Low level functions

These functions let the caller create nodes or access nodes easier.
SGFNode *sgfNewNode (void)

Allocate and return a new instance of SGFNode. The node is cleared.
SGFProperty *sgfMkProperty(const char *name, const char *value, SGFNode
*node, SGFProperty *last)

Allocate and return a new instance of SGFProperty. The name should be

1 or 2 characters long. This function should probably not be used directly.

Instead, use the sgfAddProperty functions.

SGFNode *sgfPrev (SGFNode *node)

Return the previous node in a chain. This is done by going to the parent

node and then search through the children until the same node is found.

If there is no previous node, NULL is returned.

SGFNode *sgfRoot (SGFNode *node)

Return the root of the tree. If node already is the root, node itself is

returned.

7.1.2 Functions which manipulate SGF properties

int sgfGetIntProperty (SGFNode *node, const char *name, int *value)

Get the property name in node as an integer. The value is returned in
value. Returns 1 if successful, otherwise returns 0.

int sgfGetFloatProperty(SGFNode *node, const char *name, float *value)

Get the property name in node as a floating point value. The value is
returned in value. Returns 1 if successful, otherwise returns 0.

int sgfGetCharProperty(SGFNode *node, const char *name, char **value)
Get the property name in node as a string of characters. The value is
returned in value. Returns 1 if successful, otherwise returns 0.

void sgfAddProperty (SGFNode *node, const char *name, const char *value)
Add a new property to node. There is no check to see if there already is
a property with the same name. The property value has to be a character
string.

void sgfAddPropertyInt (SGFNode *node, const char *name, long val)
Add an integer property to node. This function converts the value to a
string and calls sgfAddProperty.

void sgfAddPropertyFloat (SGFNode *node, const char *name, float val)
Add a floating point property to node. This function converts the value to
a string and calls sgfAddProperty.

Chapter 7: Handling SGF trees in memory

void sgfOverwriteProperty(SGFNode *node, const char *name, const char
*text)

Overwrite the property name in node with the string text. If the property
does not yet exist in node, it is added using sgfAddProperty.

void sgfOverwritePropertyInt (SGFNode *node, const char *name, int value)

Overwrite the property name in node with the integer value. If the prop-
erty does not yet exist in node, it is added using sgfAddPropertyInt.

void sgfOverwritePropertyFloat (SGFNode *node, const char *name, float
value)

Overwrite the property name in node with the floating point number
value. If the property does not yet exist in node, it is added using
sgfAddPropertyFloat.

7.1.3 Functions which manipulate SGF nodes

SGFNode *sgfAddStone (SGFNode *node, int color, int movex, int movey)

Add a stone to node. Properties added is either AB (black stone) or AW
(white stone).

SGFNode *sgfAddPlay (SGFNode *node, int who, int movex, int movey)

Add a child node with a move to node. Properties added is either B (black
move) or W (white move). A pass is coded by (-1, -1).

This function does not add a property to the node itself, but adds a child
node instead. If there are previous child nodes, the new node is placed
before the other ones, so this function should be used if you want to add a
main branch to the tree. To add a variation, use sgfAddPlayLast instead.

SGFNode *sgfAddPlayLast (SGFNode *node, int who, int movex, int movey)

Add a child node with a move to node. Properties added is either B (black
move) or W (white move). A pass is coded by (-1, -1).

If there are previous child nodes in node, the move is added by adding the
child node last, so this function should be used when you want to add a
variation to the game tree.

int sgfPrintCharProperty(FILE *file, SGFNode *node, const char *name)
Print the properties of type name in node on file.

int sgfPrintCommentProperty(FILE *file, SGFNode *node, const char *name)
Print the comment properties of type name in node on file.

void sgfWriteResult (SGFNode *node, float score, int overwrite)

Add a RE (result) property to node. This property will contain the game
result. If overwrite is zero the result is written only if no previous result
property exists.

SGFNode *sgfCircle (SGFNode *node, int i, int j)
Add a CR (circle) property at (i, j) to node.
SGFNode *sgfSquare (SGFNode *node, int i, int j)
Calls sgfMark to add a MA (mark) property at (i, j) to node.

45

Chapter 7: Handling SGF trees in memory 46

SGFNode *sgfTriangle (SGFNode *node, int i, int j)
Add a TR (triangle) property at (i, j) to node.
SGFNode *sgfMark (SGFNode *node, int i, int j)
Add a MA (mark) property at (i, j) to node.
SGFNode *sgfAddComment (SGFNode *node, const char *comment)
Add a C (comment) property to node.
SGFNode *sgfBoardText (SGFNode *node, int i, int j, const char *text)
Add a LB (label) property at (i, j) to node.
SGFNode *sgfBoardChar (SGFNode *node, int i, int j, char c)

Add a LB (label) property at (i, j) to node. This functions is a utility
function that converts the character to a string and calls sgfBoardText.

SGFNode *sgfBoardNumber (SGFNode #*node, int i, int j, int number)
Add a numeric label at (i, j) by calling sgfBoardText.
SGFNode *sgfStartVariant (SGFNode *node)

Start a new variation in the game tree. This means that the next pointer
of node is followed to the end of the list and a new node is inserted there.
A pointer to the new node is returned.

SGFNode *sgfStartVariantFirst (SGFNode *node)

Same as sgfStartVariant, except that the node is placed first in the list.
This means that the new variation will be the main variation of the game
tree. Returns a pointer to the new node.

SGFNode *sgfAddChild (SGFNode *node)

Adds a child node to node. If there already are children, the new node is
placed last in the list. Returns a pointer to the new node.

7.1.4 High level functions

SGFNode *sgfCreateHeaderNode (int boardsize, float komi)

Create a new SGF node with the two properties SZ (size) and KM (komi).
More properties, like HA (handicap), can later be added to it.

The idea with this node is to store the game info and to use as a root node
for the game.

SGFNode *readsgffile(const char *filename)
Read an SGF file and return the resulting tree.
void sgf_write_header (SGFNode *root, int overwrite, int seed, float komi)

Write random seed, date, ruleset, komi and SGF file version to the header
node root. If overwrite is non-zero, it overwrites the values in the node,
otherwise it just writes those that are missing.

Ruleset is always set to "Japanese", date is set to the current date.
int writesgf (SGFNode *root, const char *filename)

Write the tree starting in root to the file filename. If filename is -, the
tree is written to stdout. Returns 1 if successful, otherwise returns 0.

Chapter 7: Handling SGF trees in memory 47

7.2 The SGFTree datatype

Sometimes we just want to record an ongoing game or something similarly simple and
not do any sofisticated tree manipulation. In that case we can use the simplified interface
provided by SGFTree below.

typedef struct SGFTree_t {
SGFNode *root;
SGFNode *lastnode;

} SGFTree;

An SGFTree contains a pointer to the root node of an SGF tree and a pointer to the
node that we last accessed. Most of the time this will be the last move of an ongoing game.

Most of the functions which manipulate an SGFTree work exactly like their SGFNode
counterparts, except that they work on the current node of the tree.

All the functions below that take arguments tree and node will work on:
1. node if non-NULL
2. tree->lastnode if non-NULL

3. The current end of the game tree.

in that order.

7.2.1 Functions that manipulate sgftrees

void sgftree_clear(SGFTree *tree)

Clear the root and lastnode pointers of tree. ‘NOTE:’ This function does
not free any memory. That has to be done separately.

int sgftree_readfile(SGFTree *tree, const char *infilename)

Read an SGF file with the name infilename and store it in tree. Return
1 if successful, otherwise return 0. lastnode will be set to NULL.

SGFNode *sgftreeNodeCheck (SGFTree *tree, SGFNode *node)
Return the node to work on as described above. This is:
1. node if non-NULL
2. tree->lastnode if non-NULL
3. The current end of the tree.

in that order.
SGFNode *sgftreeAddPlay (SGFTree *tree, SGFNode *node, int color int movex,
int movey)
Add a move of color at (movex,movey) to the tree. See [sgfAddPlay],
page 45.
SGFNode *sgftreeAddPlayLast (SGFTree *tree, SGFNode *node, int color, int
movex, int movey)

Add a variation of color at (movex,movey) to the tree. See [sgfAddPlay-
Last], page 45.

Chapter 7: Handling SGF trees in memory 48

SGFNode *sgftreeAddStone (SGFTree *tree, SGFNode *node, int color, int
movex, int movey)

Add a stone of color at (movex,movey) to the tree.
void sgftreeWriteResult (SGFTree *tree, float score, int overwrite)

Add the result to the tree. If there already is a result, only overwrite it if
overwrite is non-zero.

SGFNode *sgftreeCircle (SGFTree *tree, SGFNode *node, int i, int j)
Add a circle property at (i, j) to the tree.

SGFNode *sgftreeSquare (SGFTree *tree, SGFNode *node, int i, int j)
Add a square property at (i, j) to the tree.

SGFNode *sgftreeTriangle (SGFTree *tree, SGFNode *node, int i, int j)
Add a triangle property at (i, j) to the tree.

SGFNode *sgftreeMark (SGFTree *tree, SGFNode *node, int i, int j)
Add a mark property at (i, j) to the tree.

SGFNode *sgftreeAddComment (SGFTree *tree, SGFNode *node, const char
xcomment)

Add a comment property to the tree. This is a property of the node itself,
and has no position on the board.

SGFNode *sgftreeBoardText (SGFTree *tree, SGFNode *node, int i, int j,
const char *text)

Add a text property at (i, j) to the tree.

SGFNode *sgftreeBoardChar (SGFTree *tree, SGFNode *node, int i, int j, char
c)
Add a character at (i, j) to the tree.

SGFNode *sgftreeBoardNumber (SGFTree *tree, SGFNode *node, int i, int j,
int number)

Add a number at (i, j) to the tree.
SGFNode *sgftreeStartVariant (SGFTree *tree, SGFNode *node)
Start a new variation in the tree. See [sgfStartVariant], page 46.
SGFNode *sgftreeStartVariantFirst (SGFTree *tree, SGFNode *node)
Start a new main variation in the tree. See [sgfStartVariantFirst], page 46.

SGFNode *sgftreeCreateHeaderNode (SGFTree *tree, int boardsize, float
komi)

Add a header node first in tree.
void sgftreeSetLastNode (SGFTree *tree, SGFNode *last_node)
Explicitly set the last accessed node in tree to last_node.

Chapter 8: The Board Library 49

8 The Board Library

The foundation of the GNU Go engine is a library of very efficient routines for handling
go boards. This board library, called ‘libboard’, can be used for those programs that
only need a basic go board but no Al capability. One such program is patterns/joseki
subdirectory, which compiles joseki pattern databases from SGF files.

The library consists of the following files:

‘board.c’

The basic board code. It uses incremental algorithms for keeping track of
strings and liberties on the go board.

‘hash.c’

Code for hashing go positions.
‘cache.c’

Code for caching go positions
‘globals.c’

Global variables needed in the rest of the files. This file also contains global
variables needed in the rest of the engine.

‘sgffile.c’

Implementation of output file in SGF format.
‘showbord.c’

Print go boards.
‘printutils.c’

Utilities for printing go boards and other things.

To use the board library, you must include ‘liberty.h’ just like when you use the whole
engine, but of course you cannot use all the functions declared in it, i.e. the functions that
are part of the engine, but not part of the board library. You must link your application
with 1ibboard.a.

8.1 Board Data structures

The basic data structures of the board correspond tightly to the Position struct de-
scribed in See Section 6.3 [The Position Struct], page 37. They are all stored in global
variables for efficiency reasons, the most important of which are:

Chapter 8: The Board Library 50

int board_size;

Intersection p[MAX_BOARD] [MAX_BOARD];
int board_ko_i;

int board_ko_j;

int last_moves_i[2];

int last_moves_j[2];

float komi;

int white_captured;

int black_captured;
Hash_data hashdata;

The description of the Position struct is applicable to these variables also, so we won’t
duplicate it here. All these variables are globals for performance reasons. Behind these
variables, there are a number of other private data structures. These implement incremental
handling of strings, liberties and other properties (see Chapter 19 [Incremental Board],
page 161). The variable hashdata contains information about the hash value for the current
position (see Section 14.2 [Hashing], page 125).

These variables should never be manipulated directly, since they are only the front end
for the incremental machinery. They can be read, but should only be written by using the
functions described in the next section. If you write directly to them, the incremental data
structures will become out of sync with each other, and a crash is the likely result.

8.2 Board Functions

These functions are all the public functions in ‘engine/board.c’.

8.2.1 Setup Functions

These functions are used when you want to set up a new position without actually
playing out moves.

e void clear_board()

Clears the internal board (p[][]), resets the ko position, captured stones
and recalculates the hash value.

e void setup_board(Intersection new_p[MAX_BOARD] [MAX_BOARD], int koi,
int koj, int *last_i, int *last_j, float new_komi, int w_captured, int
b_captured)

Set up a new board position using the parameters.
e void add_stone(int i, int j, int color)

Place a stone on the board and update the hashdata. No captures are
done.

e void remove_stone(int i, int j)

Remove a stone from the board and update the hashdata.

Chapter 8: The Board Library 51

8.2.2 Move Functions

Reading, often called search in computer game theory, is a fundamental process in GNU
Go. This is the process of generating hypothetical future boards in order to determine the
answer to some question, for example "can these stones live." Since these are hypothetical
future positions, it is important to be able to undo them, ultimately returning to the
present board. Thus a move stack is maintained during reading. When a move is tried,
by the function trymove, or its variant tryko. This function pushes the current board on
the stack and plays a move. The stack pointer stackp, which keeps track of the position,
is incremented. The function popgo() pops the move stack, decrementing stackp and
undoing the last move made.

Every successful trymove () must be matched with a popgo(). Thus the correct way of
using this function is:

if (trymove(i, j, color, [message], k, 1, komaster, kom_i, kom_j)) {
[potentially lots of code here]

popgo () ;

Here the komaster is only set if a conditional ko capture has been made at an earlier move.
This feature of the tactical and owl reading code in GNU Go is used to prevent redundant
reading when there is a ko on the board (see Section 14.3 [Ko|, page 131). If komaster is
not defined then take the last three parameters to be EMPTY, and -1, -1.
e void play_move(int i, int j, int color)
Play a move at (i, j). If you want to test for legality you should first call
is_legal(). This function strictly follows the algorithm:
1. Place a stone of given color on the board.
2. If there are any adjacent opponent strings without liberties, remove
them and increase the prisoner count.
3. If the newly placed stone is part of a string without liberties, remove it
and increase the prisoner count.

e int trymove(int i, int j, int color, const char *message, int k, int 1, int
komaster, int kom_i, int kom_j)
Returns true if (i,j) is a legal move for color. In that case, it pushes
the board on the stack and makes the move, incrementing stackp. If the
reading code is recording reading variations (as with ‘--decide-string’
or with ‘-0’), the string *message will be inserted in the SGF file as a
comment. The comment will also refer to the string at (k,1) if these are
not (-1,-1).
e int TRY_MOVEQ)
Wrapper around trymove which suppresses *message and (k,1). Used in
‘helpers.c’
e int tryko(int i, int j, int color, const char *message, int komaster, kom_i,
kom_3j)
tryko() pushes the position onto the stack, and makes a move (i, j)
of color. The move is allowed even if it is an illegal ko capture. It is

Chapter 8: The Board Library 52

to be imagined that color has made an intervening ko threat which was
answered and now the continuation is to be explored. Return 1 if the move
is legal with the above caveat. Returns zero if it is not legal because of
suicide.

e void popgo()
Pops the move stack. This function must (eventually) be called after a
succesful trymove or tryko to restore the board position. It undoes all the
changes done by the call to trymove/tryko and leaves the board in the
same state as it was before the call.

NOTE: If trymove/tryko returns 0, i.e. the tried move was not legal, you
must not call popgo.

e int komaster_trymove(int i, int j, int color, const char *message, int
si, int sj, int komaster, int kom_i, int kom_j, int *new_komaster, int
*new_kom_i, int *new_kom_j, int *is_conditional_ko, int consider_
conditional_ko)

Variation of trymove/tryko where ko captures (both conditional and
unconditional) must follow a komaster scheme (see Section 14.3 [Ko],
page 131).

e int move_in_stack(int m, int n, int cutoff)

Returns true if at least one move been played at (m, n) at deeper than
level 'cutoff’ in the reading tree.

e void get_move_from_stack(int k, int *i, int *j, int *color)

Retrieve the move number k from the move stack. The move location is
returned in (*i, *j), and the color that made the move is returned in
*color.

e void dump_stack(void)

Handy for debugging the reading code under GDB. Prints the move stack.
Usage: (gdb) set dump_stack().

e void reset_trymove_counter()

Reset the trymove counter. This counter is incremented every time that a
variant of trymove or tryko is called.

e int get_trymove_counter ()
Retrieve the trymove counter.

8.2.3 Status Functions

These functions are used for inquiring about properties of the current position or of
potential moves.

e int is_pass(int i, int j)

Returns true if the move (i,j) is a pass move, i.e. (-1, -1).
e int is_legal(int i, int j, int color)

Returns true if a move at (i,j) is legal for color.
e int is_ko(int m, int n, int color, int *ko_i, int *ko_j)

Return true if the move (i,j) by color is a ko capture whether capture
is a legal ko capture on this move or not. If (xko_i,*ko_j) are non-NULL,

Chapter 8: The Board Library 53

then the location of the captured ko stone are returned through (*ko_
i,*ko_j). If the move is not a ko capture, (¥ko_i,*ko_j) is set to (-1,
-1).

e int is_illegal_ko_capture(int i, int j, int color)

Return true if the move (i,j) by color would be an illegal ko capture.
There is no need to call both is_ko and is_illegal_ko_capture.

e int is_self_atari(int i, int j, int color)

Return true if a move by color at (i, j) would be a self atari, i.e. whether
it would get only one liberty. This function returns true also for the case
of a suicide move.

e int is_suicide(int i, int j, int color)

Returns true if a move at (i,j) is suicide for color.
e int does_capture_something(int i, int j, int color)

Returns true if a move at (i,j) does capture any stone for the other side.
e int stones_on_board(int color)

Return the number of stones of the indicated color(s) on the board.
This only count stones in the permanent position, not stones placed by
trymove() or tryko(). Use stones_on_board(BLACK | WHITE) to get
the total number of stones on the board.

8.2.4 String and Miscellaneous Functions

These functions are used for getting information like liberties, member stones and similar
about strings. Most of these are here because they have a particularly efficient implemen-
tation through access to the incremental data structures behind the scene.

e void find_origin(int i, int j, int *origini, int *originj)
Find the origin of a worm or a cavity, i.e. the point with smallest ‘i’

coordinate and in the case of a tie with smallest ‘j’ coordinate. The idea
is to have a canonical reference point for a string.

e int findstones(int m, int n, int maxstones, int *stonei, int *stonej)

Find the stones of the string at (m, n). (m, n) must not be empty. The lo-
cations of up to maxstones stones are written into (stoneil[], stonej[]).
The full number of stones is returned.

e int countstones(int m, int n)
Count the number of stones in a string.
e void mark_string(int i, int j, char mx[MAX_BOARD] [MAX_BOARD], char mark)

For each stone in the string at (i, j), set mx to value mark. If some of
the stones in the string are marked prior to calling this function, only the
connected unmarked stones starting from (i, j) are guaranteed to become
marked. The rest of the string may or may not become marked.

e int liberty_of_string(int ai, int aj, int si, int sj)
Returns true if (ai, aj) is a liberty of the string at (si, sj).
e int neighbor_of_string(int ai, int aj, int si, int sj)

Returns true if (ai, aj) is adjacent to the string at (si, sj).

Chapter 8: The Board Library 54

e int same_string(int ai, int aj, int bi, int bj)
Returns true if (ai, aj) is a stone in the same string as (bi, bj).

e int findlib(int m, int n, int maxlib, int *1libi, int *1ibj)
Find the liberties of the string at (m, n), which must not be empty. The
locations of up to maxlib liberties are written into (1ibi[], 1ibj[]). The
full number of liberties is returned. If you want the locations of all liberties,
whatever their number, you should pass MAXLIBS as the value for maxlib
and allocate space for 1ibi[], 1ibj[] accordingly.

e int countlib(int m, int n)
Count the number of liberties of the string at (m,n), which must not be
empty.

e int approxlib(int m, int n, int maxlib, int *1ibi, int *1ibj)
Find the liberties a stone of the given color would get if played at (m,
n), ignoring possible captures of opponent stones. (m, n) must be empty.
If 1ibi!=NULL, the locations of up to maxlib liberties are written into
(1ibil[l, 1libj[]1). The counting of liberties may or may not be halted
when maxlib is reached. The number of liberties found is returned. If you
want the number or the locations of all liberties, however many they are,
you should pass MAXLIBS as the value for maxlib and allocate space for
1ibi[], 1ibj[] accordingly.

e int chainlinks(int m, int n, int adji[MAXCHAIN], int adjj [MAXCHAIN]):
Returns (in adjil], adjj[] arrays) the chain (strings) surrounding the
string at (m, n). The chain is defined as the set of strings in immediate

connection to the (m, n) string. Return value is the number of strings in
the chain.

e void chainlinks2(int m, int n, int adji[MAXCHAIN], int adjj[MAXCHAIN], int
1lib)
Returns (in adji[], adjj[] arrays) the strings surrounding the string at
(m, n), which have exactly 1ib liberties.

8.2.5 Miscellaneous Functions

e void incremental_order_moves(int mi, int mj, int color, int si, int
sj, int *number_edges, int *number_same_string, int *number_own, int
*number_opponent, int *captured_stones, int *threatened_stones, int
x*saved_stones, int *number_open)

Help collect the data needed by order_moves() in ‘reading.c’. It’s the
caller’s responsibility to initialize the result parameters.

8.3 Hashing of Board Positions

Hashing of go positions in a hash table (sometimes also called a transposition table) is
implemented in 1ibboard, in ‘hash.c’ and cache.c to be exact.

To use the hash function, you must include ‘hash.h’ and to use the entire hash table,

you must include ‘cache.h’ in your program. The details are described in Section 14.2
[Hashing], page 125.

Chapter 9: Move generation 55

9 Move generation

9.1 Introduction

GNU Go 3.0 has a move generation scheme that is substantially different from earlier
versions. In particular, it is different from the method of move generation in GNU Go 2.6.

In the old scheme, various move generators suggested different moves with attached
values. The highest such value then decided the move. There were two important drawbacks
with this scheme:

e KEfficient multipurpose moves could only be found by patterns which explicitly looked
for certain combinations, such as a simultaneous connection and cut. There was also
no good way to e.g. choose among several attacking moves.

e The absolute move values were increasingly becoming harder to tune with the increasing
number of patterns. They were also fairly subjective and the tuning could easily break
in unexpected ways when something changed, e.g. the worm valuation.

The basic idea of the new move generation scheme is that the various move generators
suggest reasons for moves, e.g. that a move captures something or connects two strings,
and so on. When all reasons for the different moves have been found, the valuation starts.
The primary advantages are

e The move reasons are objective, in contrast to the move values in the old scheme.
Anyone can verify whether a suggested move reason is correct.

e The centralized move valuation makes tuning easier. It also allows for style dependent
tuning, e.g. how much to value influence compared to territory. Another possibility is
to increase the value of safe moves in a winning position.

9.2 Overview

The engine of GNU Go takes a position and a color to move and generates the (suppos-
edly) optimal move. This is done by the function genmove() in engine/genmove.c.

The move generation is done in three steps:
1. information gathering
2. generation of moves and move reasons

3. wvaluation of the suggested moves

This is somewhat simplified. In reality there is some overlap between the steps.

9.3 Information gathering

First we have to collect as much information as possible about the current position. Such
information could be life and death of the groups, moyo status, connection of groups and
so on. Information gathering are performed by the following functions, called in this order:

e make_worms

Collect information about all connected sets of stones (strings) and cavities.
This information is stored in the worm[] [] array.

Chapter 9: Move generation 56

e make_dragons

Collect information about connected strings, which are called dragons. Im-
portant information here is number of eyes, life status, and connectedness
between strings. The information is stored mainly in the array dragon[] []
but also in dragon2[][].

See Section 4.3 [Examining the Position], page 21, for a more exact itinerary of the
information-gathering portion of the move-generation proces.

See Chapter 10 [Worms and Dragons|, page 67, for more detailed documentation about
make_worms and make_dragons.

9.4 Generation of move reasons

Each move generator suggests a number of moves. It justifies each move suggestion with
one or move move reasons. These move reasons are collected at each intersection where the
moves are suggested for later valuation. The different kinds of move reasons considered by
GNU Go are:

ATTACK_MOVE
DEFEND_MOVE
Attack or defend a worm.

ATTACK_THREAT_MOVE
DEFEND_THREAT_MOVE
Threaten to attack or defend a worm.

NON_ATTACK_MOVE
NON_DEFEND_MOVE
a non-attacking or non-defending move.

ATTACK_EITHER_MOVE
a move that attacks either on of two worms.

DEFEND_BOTH_MOVE
a move that simultaneously defends two worms.

CONNECT_MOVE
CUT_MOVE Connect or cut two worms.

ANTISUJI_MOVE
Declare an antisuji or forbidden move.

SEMEAI_MOVE
SEMEATI_THREAT
Win or threaten to win a semeal.

EXPAND_TERRITORY_MOVE
BLOCK_TERRITORY_MOVE
a move that expands our territory or blocks opponents expansion.

EXPAND_MOYO_MOVE
a move expanding a moyo.

Chapter 9: Move generation 57

VITAL_EYE_MOVE
a vital point for life and death.

STRATEGIC_ATTACK_MOVE

STRATEGIC_DEFEND_MOVE
Moves added by ’a’ and ’d’ class patterns (see Section 12.2 [Pattern Classifica-
tion], page 93) which (perhaps intangibly) attack or defend a dragon.

OWL_ATTACK_MOVE
OWL_DEFEND_MOVE
an owl attack or defense move.

OWL_ATTACK_THREAT
OWL_DEFEND_THREAT
a threat to owl attack or defend a group.

OWL_PREVENT_THREAT
a move to remove an owl threat.

UNCERTAIN_OWL_ATTACK
UNCERTAIN_OWL_DEFENSE
an uncertain owl attack or defense.

MY_ATARI_ATARI_MOVE
a move that starts a chain of ataris, eventually leading to a capture.

YOUR_ATARI_ATARI_MOVE
a move that if played by the opponent starts a chain of ataris for the opponent,
leading to capture, which is also a safe move for us. Preemptively playing such
a move almost always defends the threat.

NOTE: Some of these are reasons for not playing a move.

More detailed discussion of these move reasons will be found in the next section.

9.5 Detailed Descriptions of various Move Reasons

9.5.1 Attacking and defending moves

A move which tactically captures a worm is called an attack move and a move which
saves a worm from being tactically captured is called a defense move. It is understood that
a defense move can only exist if the worm can be captured, and that a worm without defense
only is attacked by moves that decrease the liberty count or perform necessary backfilling.

It is important that all moves which attack or defend a certain string are found, so that
the move generation can make an informed choice about how to perform a capture, or find
moves which capture and/or defend several worms.

Attacking and defending moves are first found in make_worms while it evaluates the
tactical status of all worms, although this step only gives one attack and defense (if any)
move per worm. Immediately after, still in make_worms, all liberties of the attacked worms
are tested for additional attack and defense moves. More indirect moves are found by
find_attack_patterns and find_defense_patterns, which match the A (attack) and D

Chapter 9: Move generation 58

(defense) class patterns in ‘patterns/attack.db’ and ‘patterns/defense.db’ As a final
step, all moves which fill some purpose at all are tested whether they additionally attacks
or defends some worm. (Only unstable worms are analyzed.)

9.5.2 Threats to Attack or Defend

A threat to attack a worm, but where the worm can be defended is used as a secondary
move reason. This move reason can enhance the value of a move so that it becomes sente.
A threatening move without any other justification can also be used as a ko threat. The
same is true for a move that threatens defense of a worm, but where the worm can still be
captured if the attacker doesn’t tenuki.

Threats found by the owl code are called owl threats and they have their own owl reasons.

9.5.3 Not working attack and defense moves

The tactical reading may come up with ineffective attacks or defenses occasionally. When
these can be detected by patterns, it’s possible to cancel the attack and/or defense potential
of the moves by using these move reasons. This can only be done by action lines in the
patterns.

9.5.4 Multiple attack or defense moves

Sometimes a move attacks at least one of a number of worms or simultaneously defends
all of several worms. These moves are noted by their own move reasons.

9.5.5 Cutting and connecting moves

Moves which connect two distinct dragons are called connecting moves. Moves which
prevent such connections are called cutting moves. Cutting and connecting moves are
primarily found by pattern matching, the C and B class patterns.

A second source of cutting and connecting moves comes from the attack and defense of
cutting stones. A move which attacks a worm automatically counts as a connecting move
if there are multiple dragons adjacent to the attacked worm. Similarly a defending move
counts as a cutting move. The action taken when a pattern of this type is found is to induce
a connect or cut move reason.

When a cut or connect move reason is registered, the involved dragons are of course
stored. Thus the same move may cut and/or connect several pairs of dragons.

9.5.6 Semeai winning moves

A move which is necessary to win a capturing race is called a semeai move. These are
similar to attacking moves, except that they involve the simultaneous attack of one worm
and the defense of another. As for attack and defense moves, it’s important that all moves
which win a semeai are found, so an informed choice can be made between them.

Semeai move reasons should be set by the semeai module. However this has not been
implemented yet. One might also wish to list moves which increase the lead in a semeai
race (removes ko threats) for use as secondary move reasons. Analogously if we are behind
in the race.

Chapter 9: Move generation 59

9.5.7 Making or destroying eyes

A move which makes a difference in the number of eyes produced from an eye space is
called an eye move. It’s not necessary that the eye is critical for the life and death of the
dragon in question, although it will be valued substantially higher if this is the case. As
usual it’s important to find all moves that change the eye count.

(This is part of what eye_finder was doing. Currently it only finds one vital point for
each unstable eye space.)

9.5.8 Antisuji moves

Moves which are locally inferior or for some other reason must not be played are called
antisuji moves. These moves are generated by pattern matching. Care must be taken with
this move reason as the move under no circumstances will be played.

9.5.9 Territorial moves

Any move that increases territory gets a move reason. These are the block territory and
expand territory move reasons. Such move reasons are added by the ‘b’ and ‘e’ patterns
in ‘patterns/patterns.db’. Similarly the ‘E’ patterns attempt to generate or mitigate an
moyo, which is a region of influence not yet secure territory, yet valuable. Such a pattern
sets the “expand moyo” move reason.

9.5.10 Attacking and Defending Dragons

Just as the tactical reading code tries to determine when a worm can be attacked or
defended, the owl code tries to determine when a dragon can get two eyes and live. The
function owl_reasons() generates the corresponding move reasons.

The owl attack and owl defense move reasons are self explanatory.

The owl attack threat reason is generated if owl attack on an opponent’s dragon
fails but the owl code determines that the dragon can be killed with two consec-
utive moves. The killing moves are stored in (dragonlail[aj].owl_attacki_i,
dragon[ai] [aj] .owl_attacki_j) and (dragon[ai] [aj] .owl_second_attacki_i,
dragon([ai] [aj].owl_second_attacki_j).

Similarly if a friendly dragon is dead but two moves can revive it, an owl defense threat
move reason is generated.

The prevent threat reasons are similar but with the colors reversed: if the opponent has
an attack threat move then a move which removes the threat gets a prevent threat move
reason.

The owl uncertain move reasons are generated when the owl code runs out of nodes. In
order to prevent the owl code from running too long, a cap is put on the number of nodes
one owl read can generate. If this is exceeded, the reading is cut short and the result is
cached as usual, but marked uncertain. In this case an owl uncertain move reason may be
generated. For example, if the owl code finds the dragon alive but is unsure, a move to
defend may still be generated.

Chapter 9: Move generation 60

9.5.11 Combination Attacks

The function atari_atari tries to find a sequence of ataris culminating in an unexpected
change of status of any opponent string, from ALIVE to CRITICAL, or from CRITICAL to
DEAD. Once such a sequence of ataris is found, it tries to shorten it by rejecting irrelevant
moves.

9.6 Valuation of suggested moves

Moves are valued with respect to five different criteria. These are
e territorial value

e influence value

e strategical value

e shape value,

e secondary value.

All of these are floats and should be measured in terms of actual points.

Territorial value is the amount of secure territory generated (or saved) by the move.
Attack and defense moves have territorial values given by twice the number of stones in the
worm plus adjacent empty space. This value is in practice approximated from the “effective
size” measure.

Influence value is an estimation of the move’s effect on the size of potential territory
and possibly “area”. This is currently implemented by using delta_moyo_simple(). This can
probably be improved quite a bit. If the move captures some stones, this fact should be
taken into account when computing moyo/area.

Strategical value is a measure of the effect the move has on the safety of all groups on
the board. Typically cutting and connecting moves have their main value here. Also edge
extensions, enclosing moves and moves towards the center have high strategical value. The
strategical value should be the sum of a fraction of the territorial value of the involved
dragons. The fraction is determined by the change in safety of the dragon.

Shape value is a purely local shape analysis, which primarily is intended to choose
between moves having the same set of reasons. An important role of this measure is to
offset mistakes made by the estimation of territorial and influence values. In open positions
it’s often worth sacrificing a few points of (apparent) immediate profit to make good shape.
Shape value is implemented by pattern matching, the Shape patterns.

Secondary value is given for move reasons which by themselves are not sufficient to play
the move. One example is to reduce the number of eyes for a dragon that has several or to
attack a defenseless worm.

When all these values have been computed, they are summed, possibly weighted (sec-
ondary value should definitely have a small weight), into a final move value. This value is
used to decide the move.

9.6.1 Territorial Value

The algorithm for computing territorial value is in the function estimate_territorial_
value. As the name suggests, it seeks to estimate the amount the move adds to secure
territory.

Chapter 9: Move generation 61

This function examines every reason for the move and takes into account the safety of
different dragons. For example if the reason for the move is that it attacks and kills a worm,
no value is assigned if the worm is already DEAD. If the worm is not DEAD the value of
the move is twice the effective size of the worm.

In addition to such additions to territory, if the move is found to be a block or expanding
move, the function influence_delta_territory is consulted to find areas where after the
move the influence function becomes so strong that these are counted as secure territory,
or where the influence function is sufficiently weakened that these are removed from the
secure territory of the opponent (see Section 16.6 [Influential Functions|, page 149).

9.6.2 Influence Value

The function estimate_influence_value attempts to assign a value to the influence a
move. The functions influence_delta_strict_moyo influence_delta_strict_area are
called to find areas where after the move the influence function becomes strong enough that
these are counted as friendly moyo or area, or which are taken away from the opponent’s
moyo or area (see Section 16.6 [Influential Functions], page 149).

9.6.3 Strategical Value

Strategical defense or attack reasons are assigned to any move which matches a pattern
of type ‘a’ or ‘d’. These are moves which in some (often intangible) way tend to help
strengthen or weaken a dragon. Of course strengthening a dragon which is already alive
should not be given much value, but when the move reason is generated it is not necessary
to check its status or safety. This is done later, during the valuation phase.

9.6.4 Shape Factor

In the value field of a pattern (see Section 12.3 [Pattern Values], page 95) one may specify
a shape value.

This is used to compute the shape factor, which multiplies the score of a move. We
take the largest positive contribution to shape and add 1 for each additional positive con-
tribution found. Then we take the largest negative contribution to shape, and add 1 for
each additional negative contribution. The resulting number is raised to the power 1.05 to
obtain the shape factor.

The rationale behind this complicated scheme is that every shape point is very significant.
If two shape contributions with values (say) 5 and 3 are found, the second contribution
should be devalued to 1. Otherwise the engine is too difficult to tune since finding multiple
contributions to shape can cause significant overvaluing of a move.

9.6.5 Minimum Value

A pattern may assign a minimum (and sometimes also a maximum) value. For example
the Joseki patterns have values which are prescribed in this way, or ones with a value field.
One prefers not to use this approach but in practice it is sometimes needed.

Chapter 9: Move generation 62

9.6.6 Secondary Value

Secondary move reasons are weighed very slightly. Such a move can tip the scales if all
other factors are equal.

Followup value refers to value which may acrue if we get two moves in a row in a
local area. It is assigned by the function add_followup_value, for example through the
followup_value autohelper macro.

Attack and defense threats, including owl threats are usually given a small amount of
weight, as is followup value.

If the largest move on the board is a ko which we cannot legally take, then such a move
becomes attractive as a ko threat and the followup value or the value of the threat are taken
in full.

9.7 Move Generation Functions

The following functions are defined in ‘move_reasons.c’.
e void clear_move_reasons(void)
Initialize move reason data structures.
e void add_lunch(int ai, int aj, int bi, int bj)

See if a lunch is already in the list of lunches, otherwise add a new entry.
A lunch is in this context a pair of eater (a dragon) and food (a worm).

e void remove_lunch(int ai, int aj, int bi, int bj)
Remove a lunch from the list of lunches.

e void add_defense_move(int ti, int tj, int ai, int aj)
Add to the reasons for the move at (ti, tj) that it defends the worm at (ai,
aj).

e int defense_move_known(int ti, int tj, int ai, int aj)
Query whether a defense move is already known. Add to the reasons for
the move at (ti, tj) that it attacks the worm at (ai, aj).

e int attack_move_known(int ti, int tj, int ai, int aj)
Query whether an attack move is already known.

e void remove_defense_move(int ti, int tj, int ai, int aj)

Remove from the reasons for the move at (ti, tj) that it defends the worm
at (ai, aj). We do this by adding a NON_DEFEND move reason and wait
until later to actually remove it. Otherwise it may be added again. We
must also check that there do exist a defense move reason for this worm.
Otherwise we may end up in an infinite loop when trying to actually remove
it.

e void remove_attack_move(int ti, int tj, int ai, int aj)

Remove from the reasons for the move at (ti, tj) that it attacks the worm
at (ai, aj). We do this by adding a NON_ATTACK move reason and wait
until later to actually remove it. Otherwise it may be added again.

Chapter 9: Move generation 63

e void add_connection_move(int ti, int tj, int ai, int aj, int bi, int bj)

Add to the reasons for the move at (ti, tj) that it connects the dragons at
(ai, aj) and (bi, bj). Require that the dragons are distinct.

e void add_cut_move(int ti, int tj, int ai, int aj, int bi, int bj)

Add to the reasons for the move at (ti, tj) that it cuts the dragons at (ai,
aj) and (bi, bj). Require that the dragons are distinct.

e void add_antisuji_move(int ti, int tj)

Add to the reasons for the move at (ti, tj) that it is an anti-suji. This
means that it’s a locally inferior move or for some other reason must not
be played.

e void add_semeai_move(int ti, int tj, int ai, int aj, int bi, int bj)
Add to the reasons for the move at (ti, tj) that it wins a semeai between
my worm at (ai, aj) and your worm at (bi, bj).

e void add_vital_eye_move(int ti, int tj, int ai, int aj, int color)

Add to the reasons for the move at (ti, tj) that it’s the vital point for the
eye space at (ai, aj) of color color.

e void add_attack_either_move(int ti, int tj, int ai, int aj, int bi, int bj)

Add to the reasons for the move at (ti, tj) that it attacks either (ai, aj)
or (bi, bj) (e.g. a double atari). This move reason is only used for double
attacks on opponent stones. Before accepting the move reason, check that
the worms are distinct and that neither is undefendable.

e void add_defend_both_move(int ti, int tj, int ai, int aj, int bi, int bj)

Add to the reasons for the move at (ti, tj) that it defends both (ai, aj)
and (bi, bj) (e.g. from a double atari). This move reason is only used for
defense of own stones.

e void add_block_territory_move(int ti, int tj)

Add to the reasons for the move at (ti, tj) that it secures territory by
blocking.

e void add_expand_territory_move(int ti, int tj)
Add to the reasons for the move at (ti, tj) that it expands territory.
e void add_expand_moyo_move(int ti, int tj)
Add to the reasons for the move at (ti, tj) that it expands moyo.
e void add_shape_value(int ti, int tj, float value)
Increase or decrease the shape value for the move at (ti, tj).
e void add_strategical_attack_move(int ti, int tj, int ai, int aj)

Add to the reasons for the move at (ti, tj) that it attacks the dragon (ai,
aj) on a strategical level.

e void add_strategical_defense_move(int ti, int tj, int ai, int aj)

Add to the reasons for the move at (ti, tj) that it defends the dragon (ai,
aj) on a strategical level.

e void add_followup_value(int ti, int tj, float value)

Add value of followup moves.

Chapter 9: Move generation

e void set_minimum_move_value(int ti, int tj, float value)
Set a minimum allowed value for the move.

e void set_maximum_move_value(int ti, int tj, float value)
Set a maximum allowed value for the move.

e void set_minimum_territorial_value(int ti, int tj, float value)
Set a minimum allowed territorial value for the move.

e void set_maximum_territorial_value(int ti, int tj, float value)
Set a maximum allowed territorial value for the move.

e int review_move_reasons(int *i, int *j, float *val, int color)

Review the move reasons to find which (if any) move we want to play.

9.8 Local Move Generation Functions

The following functions in ‘move_reasons.c’ are declared static. Their scope is limited

to that file.
e static int find_worm(int ai, int aj)

Find the index of a worm in the list of worms. If necessary, add a new
entry. (ai, aj) must point to the origin of the worm.

e static int find_dragon(int ai, int aj)

Find the index of a dragon in the list of dragons. If necessary, add a new
entry. (ai, aj) must point to the origin of the dragon.

e static int find_connection(int dragonl, int dragon2)

Find the index of a connection in the list of connections. If necessary, add
a new entry.

e static int find_semeai(int myworm, int yourworm)

Find the index of a semeai in the list of semeais. If necessary, add a new
entry.

e static int find_worm_pair(int worml, int worm2)

Find the index of an unordered pair of worms in the list of worm pairs. If
necessary, add a new entry.

e static int find_eye(int i, int j, int color)

Find the index of an eye space in the list of eye spaces. If necessary, add a
new entry.

e static int find_reason(int type, int what)
Find a reason in the list of reasons. If necessary, add a new entry.
e static void add_move_reason(int ti, int tj, int type, int what)
Add a move reason for (ti, tj) if it’s not already there or the table is full.
e static void remove_move_reason(int ti, int tj, int type, int what)
Remove a move reason for (ti, tj). Ignore silently if the reason wasn’t there.
e static int move_reason_known(int ti, int tj, int type, int what)

Check whether a move reason already is recorded for a move.

Chapter 9: Move generation

e static void find_more_attack_and_defense_moves(int color)
Test all moves that defends, attacks, connects or cuts to see if they also
attack or defend some other worm.

e static void remove_opponent_attack_and_defense_moves(int color)

Remove attacks on own stones and defense of opponent stones, i.e. moves
which are only relevant for the opponent. It might seem useful to take
these into account (proverb "my enemy’s vital point is my vital point")
but now it seems they only lead to trouble. It’s easiest just to remove
them altogether.

e static void do_remove_false_attack_and_defense_moves(void)

Remove attacks and defenses that have earlier been marked as
NON_ATTACK or NON_DEFEND respectively, because they actually
don’t work.

e static int strategically_sound_defense(int ai, int aj, int ti, int tj)
It’s often bad to run away with a worm that is in a strategically weak
position. This function gives heuristics for determining whether a move at
(ti, tj) to defend the worm (ai, aj) is strategically sound. These heuristics
need improvement. The biggest weakness is that they sometimes fail to
detect when we’re running away towards open ground. It would help much
to have a reliable escape route mechanism.

e static void induce_secondary_move_reasons(int color)

Any move that captures or defends a worm also connects or cuts the sur-
rounding dragons. Find these secondary move reasons.

— There is a certain amount of optimizations that could be done here.

— Even when we defend a worm, it’s possible that the opponent still can
secure a connection, e.g. underneath a string with few liberties. Thus
a defense move isn’t necessarily a cut move.

— Connections are transitive. If a move connects A with B and B with
C, we should infer that it connects A with C as well.
e static float effective_dragon_size(int ai, int aj)

Measure the "effective" size of a dragon. This measure is a reasonable
approximation of how much area a dragon cover, including some amount
of surrounding empty spaces.

e static float dragon_safety(int ai, int aj, int ignore_dead_dragons)

An attempt to estimate the safety of a dragon. This should be possible to
improve considerably. The resulting value is interpreted so that 1.0 means
a fully safe dragon while 0.0 is an almost dead dragon.

e static float connection_value2(int ai, int aj, int bi, int bj, int ti, int
tj)
Strategical value of connecting (or cutting) the dragon at (ai, aj) to the
dragon at (bi, bj). This function is assymetric.
e static void estimate_territorial_value(int m, int n, int color)
Estimate the direct territorial value of a move at (m,n).
e static void estimate_influence_value(int m, int n, int color)
Estimate the influence value of a move at (m,n).

Chapter 9: Move generation 66

e static void estimate_strategical_value(int m, int n, int color)
Estimate the strategical value of a move at (m,n).
e static int is_antisuji_move(int m, int n)
Look through the move reasons to see whether (m, n) is an antisuji move.
e static float value_move_reasons(int m, int n, int color)

Combine the reasons for a move at (m, n) into an old style value. These
heuristics are now somewhat less ad hoc but probably still need a lot of
improvement.

e static void value_moves(int color)

Loop over all possible moves and value the move reasons for each.

9.9 End Game

Endgame moves are generated just like any other move by GNU Go. In fact, the concept
of endgame does not exist explicitly, but if the largest move initially found is worth 6 points
or less, an extra set of patterns in ‘endgame.db’ is matched and the move valuation is
redone.

Chapter 10: Worms and Dragons 67

10 Worms and Dragons

Before considering its move, GNU Go collects some data in several arrays. Two of these
arrays, called worm and dragon, are discussed in this document. Others are discussed in
See Chapter 11 [Eyes], page 82.

This information is intended to help evaluate the connectedness, eye shape, escape po-
tential and life status of each group.

Later routines called by genmove() will then have access to this information. This
document attempts to explain the philosophy and algorithms of this preliminary analysis,
which is carried out by the two routines make_worm() and make_dragon() in ‘dragon.c’.

A worm is a maximal set of vertices on the board which are connected along the horizontal
and vertical lines, and are of the same color, which can be BLACK, WHITE or EMPTY. The term
EMPTY applied to a worm means that the worm consists of empty (unoccupied) vertices. It
does not mean that that the worm is the empty set. A string is a nonempty worm. An
empty worm is called a cavity. If a subset of vertices is contained in a worm, there is a
unique worm containing it; this is its worm closure.

A dragon is a union of strings of the same color which will be treated as a unit. The drag-
ons are generated anew at each move. If two strings are in the dragon, it is the computer’s
working hypothesis that they will live or die together and are effectively connected.

The purpose of the dragon code is to allow the computer to formulate meaningful state-
ments about life and death. To give one example, consider the following situation:

00000
00XXX00
0X...X0
O0XXXXX0

00000

The X’s here should be considered a single group with one three-space eye, but they
consist of two separate strings. Thus we must amalgamate these two strings into a single
dragon. Then the assertion makes sense, that playing at the center will kill or save the
dragon, and is a vital point for both players. It would be difficult to formulate this statement
if the X’s are not perceived as a unit.

The present implementation of the dragon code involves simplifying assumptions which
can be refined in later implementations.

10.1 Worms

The array struct worm_data worm [MAX_BOARD] [MAX_BOARD] collects information about
the worms. We will give definitions of the various fields. Each field has constant value at
each vertex of the worm. We will define each field.

struct worm_data {
int color;
int size;

Chapter 10: Worms and Dragons

float effective_size;
int origini;

int originj;

int liberties;
int liberties?2;
int liberties3;
int libertiesé4;
int attacki;

int attackj;

int attack_code;
int defendi;

int defendj;

int defend_code;
int lunchi;

int lunchj;

int cutstone;
int cutstone2;
int genus;

int value;

int ko;

int inessential;
int invincible;
int unconditional_status;

};

e color

e size

o effec

o (orig

If the worm is BLACK or WHITE, that is its color. Cavities (empty worms)
have an additional attribute which we call bordercolor. This will be one
of BLACK_BORDER, WHITE_BORDER or GRAY_BORDER. Specifically, if all the
worms adjacent to a given empty worm have the same color (black or white)
then we define that to be the bordercolor. Otherwise the bordercolor is
gray.

Rather than define a new field, we keep this data in the field color. Thus
for every worm, the color field will have one of the following values: BLACK,
WHITE, GRAY_BORDER, BLACK_BORDER or WHITE_BORDER. The last three cat-
egories are empty worms classified by bordercolor.

This field contains the cardinality of the worm.

tive_size

This is the number of stones in a worm plus the number of empty in-
tersections that are at least as close to this worm as to any other worm.
Intersections that are shared are counted with equal fractional values for
each worm. This measures the direct territorial value of capturing a worm.
effective_size is a floating point number. Only intersections at a distance
of 4 or less are counted.

ini, originj)

Each worm has a distinguished member, called its origin. Its coordinates
are (origini, originj). The purpose of this field is to make it easy to

68

Chapter 10: Worms and Dragons

determine when two vertices lie in the same worm: we compare their origin.
Also if we wish to perform some test once for each worm, we simply perform
it at the origin and ignore the other vertices. The origin is characterized
by the test:

(worm[m] [n] .origini == m) && (worm[m] [n].originj == n).
e liberties

For a nonempty worm the field liberties is the number of liberties of
the string. This is supplemented by LIBERTIES2, LIBERTIES3 and
LIBERTIES4, which are the number of second order, third order, and
fourth order liberties, respectively. The definition of liberties of order >1 is
adapted to the problem of detecting the shape of the surrounding cavity.
In particular we want to be able to see if a group is loosely surrounded.
a liberty of order n is an empty vertex which may be connected to the
string by placing n stones of the same color on the board, but no fewer.
The path of connection may pass through an intervening group of the
same color. The stones placed at distance >1 may not touch a group of
the opposite color. Connections through ko are not permitted. Thus in
the following configuration:

XX, We label the XX.4.
X0.... liberties of X01234
X0.... order < 5 of X01234
...... the 0 group: .12.4.
XX, . X.X..

The convention that liberties of order >1 may not touch a group of the op-
posite color means that knight’s moves and one space jumps are perceived
as impenetrable barriers. This is useful in determining when the string is
becoming surrounded.

The path may also not pass through a liberty at distance 1 if that liberty
is flanked by two stones of the opposing color. This reflects the fact that
the O stone is blocked from expansion to the left by the two X stones in
the following situation:

X.
.0
X.

We say that n is the distance of the liberty of order n from the dragon.
e (attacki, attackj):

If it is determined that the string may be easily captured, (attacki,
attackj) points to an attacking move. This is only used for strings with
<5 liberties. If no attacking move is found, then attack_code ==

e attack_code

1 if the worm can be captured unconditionally, 2 or 3 if it can be captured
with ko. If it can be captured provided the attacker is willing to ignore any
ko threat, then the attack_code == 2. If it can be captured provided the

Chapter 10: Worms and Dragons 70

attacker can come up with a sufficiently large ko threat, then the attack_
code ==

e lunch

If lunchi !'= -1 then (lunchi, lunchj) points to a boundary worm which
can be easily captured. (It does not matter whether or not the string can
be defended.)

e defend:

If there is an attack on the string (stored in the attack field defined
above), and there is a move which defends the string, this move is stored
in (defendi, defendj). Otherwise defend_code == 0.

e defend_code

1 if the worm can be defended unconditionally, 2 or 3 if it can be defended
with ko. If it can be defended provided the defender is willing to ignore
any ko threat, then the defend_code == 2. If it can be captured provided
the defender can come up with a sufficiently large ko threat, then the
defend_code == 3. If there is no attack, defend_code is 0.

We have two distinct notions of cutting stone, which we keep track of in the separate fields
worm.cutstone and worm.cutstone2. We maintain both fields because the historically
older cutstone field is needed to deal with the fact that e.g. in the position

0XX.0
.00X0
0XX.0

the X stones are amalgamated into one dragon because neither cut works as long as the two
O stones are in atari. Therefore we add one to the cutstone field for each potential cutting
point, indicating that these O stones are indeed worth rescuing.

For the time being we use both concepts in parallel. It’s possible we also old concept for
correct handling of lunches.

cutstone:

This field is equal to 2 for cutting stones, 1 for potential cutting stones.
Otherwise it is zero. Definitions for this field: a cutting stone is one adja-
cent to two enemy strings, which do not have a liberty in common. The
most common type of cutting string is in this situation:

X0
0X

A potential cutting stone is adjacent to two enemy strings which do share
a liberty. For example, X in:

X0
0.

For cutting strings we set worm[m] [n] . cutstone=2. For potential cutting
strings we set worm[m] [n] .cutstone=1.

Chapter 10: Worms and Dragons

cutstone?2:

Cutting points are identified by the patterns in the connections database.
Proper cuts are handled by the fact that attacking and defending moves
also count as moves cutting or connecting the surrounding dragons. The
cutstone?2 field is set during find_cuts(), called from make_domains().

The cutstone? field is needed to deal with the fact that e.g. in the position

0XX.0
.00X0
0XX.0

the X stones are amalgamated into one dragon because neither cut works
as long as the two O stones are in atari. Therefore we add one to the
cutstone field for each potential cutting point, indicating that these O
stones are indeed worth rescuing.

For the time being we use both concepts in parallel, with the new concept
stored in cutstone2. It’s possible that we have to keep the old concept for
correct handling of lunches.

genus:

There are two separate notions of genus for worms and dragons. The
dragon notion is more important, so dragon[m] [n].genus is a far more
useful field than worm[m] [n] .genus. Both fields are intended as approx-
imations to the number of eyes. The genus of a string is the number of
connected components of its complement, minus one. It is an approxima-
tion to the number of eyes of the string.

ko:
For every ko, the flag ko is set to 1 at the ko stone which is in atari, and
also at the ko cavity adjacent to it. Thus in this situation:
X0
X.X0
X0
the flag ko is set to 1 at the rightmost X stone, and also at the cavity to
its left.
inessential:

An inessential string is one which meets a criterion designed to guarantee
that it has no life potential unless a particular surrounding string of the
opposite color can be killed. More precisely an inessential string is a string
S of genus zero, not adjacent to any opponent string which can be easily
captured, and which has no edge liberties or second order liberties, and
which satisfies the following further property: If the string is removed from
the board, then the empty worm E which is the worm closure of the set
of vertices which it occupied has bordercolor the opposite of the removed
string. The empty worm E (empty, that is, as a worm of the board modified
by removal of S) consists of the union of support of S together with certain
other empty worms which we call the boundary components of S.

71

Chapter 10: Worms and Dragons 72

The inessential strings are used in the amalgamation of cavities in make_
dragon().

invincible:
An invincible worm is one which GNU Go thinks cannot be captured.
Invincible worms are computed by the function unconditional_life()
which tries to find those worms of the given color that can never be cap-

tured, even if the opponent is allowed an arbitrary number of consecutive
moves.

unconditional_status

Unconditional status is also set by the function unconditional_life. This
is set ALIVE for stones which are invincible. Stones which can not be
turned invincible even if the defender is allowed an arbitrary number of
consecutive moves are given an unconditional status of DEAD. Empty
points where the opponent cannot form an invincible worm are called un-
conditional territory. The unconditional status is set to WHITE_BORDER
or BLACK_BORDER depending on who owns the territory. Finally, if a
stone can be captured but is adjacent to unconditional territory of its own
color, it is also given the unconditional status ALIVE. In all other cases
the unconditional status is UNKNOWN.

To make sense of these definitions it is important to notice that any stone
which is alive in the ordinary sense (even if only in seki) can be transformed
into an invincible group by some number of consecutive moves. Well, this
is not entirely true because there is a rare class of seki groups not satis-
fying this condition. Exactly which these are is left as an exercise for the
reader. Currently unconditional_life, which strictly follows the defini-
tions above, calls such seki groups unconditionally dead, which of course is
a misfeature. It is possible to avoid this problem by making the algorithm
slightly more complex, but this is left for a later revision.

The function makeworms () will generate data for all worms. For empty worms, the fol-
lowing fields are significant: color, size, origini and originj. The liberty, attack,
defend, cutstone, genus and inessential fields have significance only for nonempty
worms.

10.2 Amalgamation

A dragon, we have said, is a group of stones which are treated as a unit. It is a working
hypothesis that these stones will live or die together. Thus the program will not expect to
disconnect an opponent’s strings if they have been amalgamated into a single dragon.

The function make_dragons () will amalgamate worms into dragons by maintaining sep-
arate arrays worm[] and dragon[] containing similar data. Each dragon is a union of
worms. Just as the data maintained in worm[] [] is constant on each worm, the data in
dragon[] [] is constant on each dragon.

Amalgamation of two worms means means in practice replacing the origin of one worm
by the origin of the other. Amalgamation takes place in two stages: first, the amalgamation
of empty worms (cavities) into empty dragons (caves); then, the amalgamation of colored
worms into dragons.

Chapter 10: Worms and Dragons 73

10.3 Amalgamation of cavities

As we have already defined it, a cavity is an empty worm. A cave is an empty dragon.

Under certain circumstances we want to amalgamate two or more cavities into a single
cave. This is done before we amalgamate strings. An example where we wish to amalgamate
two empty strings is the following;:

00000
00XXX00
0XaObX0
00XXX00

00000

The two empty worms at a and b are to be amalgamated.

We have already defined a string to be inessential if it meets a criterion designed to
guarantee that it has no life potential unless a particular surrounding string of the opposite
color can be killed. An inessential string is a string S of genus zero which is not a cutting
string or potential cutting string, and which has no edge liberties or second order liberties
(the last condition should be relaxed), and which satisfies the following further property: If
the string is removed from the board, then the empty worm E which is the worm closure
of the set of vertices which it occupied has bordercolor the opposite of the removed string.

Thus in the previous example, after removing the inessential string at the center the
worm closure of the center vertex consists of an empty worm of size 3 including a and b.
The latter are the boundary components.

The last condition in the definition of inessential worms excludes examples such as this:

0000
0XX00
0XX.X0
0X.XX0
00XX0
000

Neither of the two X strings should be considered inessential (together they form a live
group!) and indeed after removing one of them the resulting space has gray bordercolor, so
by this definition these worms are not inessential.

Some strings which should by rights be considered inessential will be missed by this
criterion.

The algorithm for amalgamation of empty worms consists of amalgamating the boundary
components of any inessential worm. The resulting dragon has bordercolor the opposite of
the removed string.

Any dragon consisting of a single cavity has bordercolor equal to that of the cavity.

Chapter 10: Worms and Dragons 74

10.4 Amalgamation of strings

Amalgamation of nonempty worms in GNU Go 3.0 proceeds as follows. First we amal-
gamate all boundary components of an eyeshape. Thus in the following example:

.0000. The four X strings are amalgamated into a
00XX0. single dragon because they are the boundary
0X..X0 components of a blackbordered cave. The
0X..X0 cave could contain an inessential string
00XX0. with no effect on this amalgamation.

XXX...

The code for this type of amalgamation is in the routine dragon_eye (), discussed further
in EYES.

Next, we amalgamate strings which seem uncuttable. We amalgamate dragons which
either share two or more common liberties, or share one liberty into the which the opponent
cannot play without being captured. (ignores ko rule).

X. X.X XXXX. XXX X.0
X X.X Xooo.o.. X X.X
XXXXXX.X 0XX

A database of connection patterns may be found in ‘patterns/conn.db’.

10.5 Connection

The fields black_eye.cut and white_eye.cut are set where the opponent can cut, and
this is done by the B (break) class patterns in conn.db. There are two important uses for
this field, which can be accessed by the autohelper functions xcut () and ocut (). The first
use is to stop amalgamation in positions like

XL
00x00
X.0.X
..0..

where X can play at * to cut off either branch. What happens here is that first connection
pattern CB1 finds the double cut and marks * as a cutting point. Later the C (connection)
class patterns in conn.db are searched to find secure connections over which to amalgamate
dragons. Normally a diagonal connection would be deemed secure and amalgamated by
connection pattern CC101, but there is a constraint requiring that neither of the empty
intersections is a cutting point.

A weakness with this scheme is that X can only cut one connection, not both, so we
should be allowed to amalgamate over one of the connections. This is performed by connec-
tion pattern CC401, which with the help of amalgamate_most_valuable_helper () decides
which connection to prefer.

Chapter 10: Worms and Dragons 75

The other use is to simplify making alternative connection patterns to the solid connec-
tion. Positions where the diag_miai helper thinks a connection is necessary are marked as
cutting points by connection pattern 12. Thus we can write a connection pattern like CC6:

7xXxXX7 straight extension to connect
X00x*?
0...7

:8,C,NULL

TXXX?
X00b?
Oa..?

;xcut (a) && odefend_against(b,a)

where we verify that a move at * would stop the enemy from safely playing at the cutting
point, thus defending against the cut.

10.6 Half Eyes and False Eyes

A half eye is a place where, if the defender plays first, an eye will materialize, but where
if the attacker plays first, no eye will materialize. A false eye is a vertex which is surrounded
by a dragon yet is not an eye. Here is a half eye:

XXXXX
00. .X
0.0.X
00XXX

Here is a false eye:

XXXXX
X00.X
0.0.X
00XXX

The "topological" algorithm for determining half and false eyes is described elsewhere
(see Section 11.7 [Eye Topology]|, page 87).

The half eye data is collected in the dragon array. Before this is done, however, an
auxiliary array called half eye_data is filled with information. The field type is 0, or else
HALF_EYE or FALSE_EYE depending on which type is found; and (ki, kj) points to a move
to kill the half eye.

Chapter 10: Worms and Dragons 76

struct half_eye_data half_eye [MAX_BOARD] [MAX_BOARD] ;

struct half_eye_data {
int type; /* HALF_EYE or FALSE_EYE; */
int num_attacks; /* number of attacking points */
int num_defends; /* number of defending points */

int ail4]; /* (ai, aj) attacks a topological halfeye */
int aj[4];
int di[4]; /* (di, dj) defends a topological halfeye */
int dj[4];

};

The array struct half_eye_data half_eye[MAX_BOARD] [MAX_BOARD] contains infor-
mation about half and false eyes. If the type is HALF_EYE then up to four moves are
recorded which can either attack or defend the eye. In rare cases the attack points could
be different from the defense points.

10.7 Dragons

The array struct dragon_data dragon [MAX_BOARD] [MAX_BOARD] collects information
about the dragons. We will give definitions of the various fields. Each field has constant
value at each vertex of the dragon.

struct dragon_data {
int color;
int id;
int origini;
int originj;
int borderi;
int borderj;
int size;
float effective_size;
int heyes;
int heyei;
int heyej;
int genus;
int escape_route;
int lunchi;
int lunchj;
int status;
int owl_status;
int owl_attacki;
int owl_attackj;
int owl_attack_certain;
int owl_second_attacki;
int owl_second_attackj;
int owl_defendi;

Chapter 10: Worms and Dragons

int owl_defendj;

int owl_defend_certain;

int owl_second_defendi;

int owl_second_defendj;

int old_safety;

int matcher_status;

int semeai;

int semeai_margin_of_safety;

};

Here are the definitions of each field.
e color:

For strings, this is BLACK or WHITE. For caves, it is BLACK_BORDER, WHITE_
BORDER or GRAY_BORDER. The meaning of these concepts is the same as for
worms.

This is a pointer to the dragon’s field in the dragon2 array (see Sec-
tion 10.10 [Dragon2], page 80).

e (origini, originj)
The origin of the dragon is a unique particular vertex of the dragon, useful
for determining when two vertices belong to the same dragon. Before amal-

gamation the worm origins are copied to the dragon origins. Amalgamation
of two dragons amounts to changing the origin of one.

e (borderi, borderj)

This field is relevant for caves. If the color of the cave is BLACK_BORDER or
WHITE_BORDER then the surrounding worms all have the same color BLACK
or WHITE and these have been amalgamated into a dragon with origin
(borderi, borderj).

e size:
This is the cardinality of the dragon.
o cffective_size:

The sum of the effective sizes of the constituent worms. Remembering that
vertices equidistant between two or more worms are counted fractionally in
worm.effective_size, this equals the cardinality of the dragon plus the
number of empty vertices which are nearer this dragon than any other.

e heyes:

This is the number of half eyes the dragon has. A half eye is a pattern
where an eye may or may not materialize, depending on who moves first.

e (heyi,heyj):
If any half eyes are found, (heyi,heyj) points to a move which will create
an eye.

e genus:

The genus of a nonempty dragon consists of the number of distinct adjacent
caves whose bordercolor is the color of the dragon, minus the number of

Chapter 10: Worms and Dragons

false eyes found. The genus is a computable approximation to the number
of eyes a dragon has.

® escape_route:

This is a measure of the escape potential of the dragon. If dragon.escape_
route is large, GNU Go believes that the dragon can escape, so finding
two eyes locally becomes less urgent. Further documentation may be found
else where (see Section 16.5 [Escape], page 148).

e (lunchi, lunchj)

If lunchi != -1, then (lunchi, lunchj) points to a boundary worm which
can be captured easily. In contrast with the worm version of this parameter,
we exclude strings which cannot be saved.

e status:

An attempt is made to classify the dragons as ALIVE, DEAD, CRITICAL or
UNKNOWN. The CRITICAL classification means that the fate of the dragon
depends on who moves first in the area. The exact definition is in the
function dragon_status(). If the dragon is found to be surrounded, the
status is DEAD if it has less than 1.5 eyes or if the reading code determines
that it can be killed, ALIVE if it has 2 or more eyes, and CRITICAL if it has
1.5 eyes. A lunch generally counts as a half eye in these calculations. If it
has less than 2 eyes but seems possibly able to escape, the status may be
UNKNOWN.

e owl_status

This is a classification similar to dragon.status, but based on the life
and death reading in ‘owl.c’. The owl code (see Section 15.1 [The Owl
Code], page 141) is only run on dragons with dragon.escape_route>5 and
dragon2.moyo>10 (see Section 10.10 [Dragon2|, page 80). If these condi-
tions are not met, the owl status is UNCHECKED. If owl_attack() deter-
mines that the dragon cannot be attacked, it is classified as ALIVE. Oth-
erwise, owl_defend() is run, and if it can be defended it is classified as
CRITICAL, and if not, as DEAD.

e (owl_attacki, owl_attackj)

If the owl code finds that the dragon can be attacked, this is the move.
This may be tenuki (i.e. (-1,-1)) if the owl code thinks the group is dead
as it stands.

e owl_attack_certain

The function owl_attack, which is used to set (owl_attacki,
owl_attackj), is given an upper bound of owl_node_limit in the
number of nodes it is allowed to generate. If this is exceeded the result is
considered uncertain and this flag is set.

e (owl_second_attack_i, owl_second_attack_j)

If the level is at least 8, and if a dragon is not owl attackable, the owl
function owl_threaten_attack is asked if the dragon can be killed
with two moves in a row. If two such killing moves are found, they are
cached in (owl_attacki, owl_attackj) and (owl_second_attack_i,
owl_second_attack_j).

Chapter 10: Worms and Dragons 79

(owl_defendi, owl_defendj)
If the owl code finds that the dragon can be defended, this is the move.
e owl_defend_certain

e (owl_second_defend_i, owl_second_defend_j) Similar to owl_attack_certain
and (owl_second_attack_i, owl_second_attack_j)

e matcher_status

This is the status used by the pattern matcher. If owl_status is available
(not UNCHECKED) this is used. Otherwise, we use the status field, except
that we upgrade DEAD to

UNKNOWN.
e semeail
True if the dragon is part of a semeai.
e semeai_margin_of_safety

Small if the semeal is close. Somewhat unreliable.

10.8 Colored Dragon Display

You can get a colored ASCII display of the board in which each dragon is assigned a
different letter; and the different values of dragon.status values (ALIVE, DEAD, UNKNOWN,
CRITICAL) have different colors. This is very handy for debugging. A second diagram shows
the values of owl.status. If this is UNCHECKED the dragon is displayed in White.

Save a game in sgf format using CGoban, or using the ‘-0’ option with GNU Go itself.

Open an xterm or rxvt window. You may also use the Linux console. Using the console,
you may need to use “SHIFT-PAGE UP” to see the first diagram. Xterm will only work if it
is compiled with color support—if you do not see the colors try rxvt. Make the background
color black and the foreground color white.

Execute:
gnugo -1 [filename] -L [movenum] -T to get the colored display.

The color scheme: Green = ALIVE; Yellow = UNKNOWN; Cyan = DEAD and Red =
CRITICAL. Worms which have been amalgamated into the same dragon are labelled with
the same letter.

Other useful colored displays may be obtained by using instead:
e the option -E to display eye spaces (see Chapter 11 [Eyes|, page 82).
e the option -m 1 to display territory (see Chapter 17 [Moyo], page 152).

The colored displays are documented elsewhere (see Section 5.8 [Colored Display],
page 33).

10.9 Worm and Dragon Functions

Here are the public functions in ‘engine/worm.c’:

Chapter 10: Worms and Dragons 80

e void make_worms(void)
Fach worm is marked with an origin, having coordinates (origini,
originj). This is an arbitrarily chosen element of the worm, in practice
the algorithm puts the origin at the first element when they are given the
lexicographical order, though its location is irrelevant for applications. To
see if two stones lie in the same worm, compare their origins.

e void propagate_worm(int m, int n)
propagate_worm() takes the worm data at one stone and copies it to the
remaining members of the worm.
e int examine_cavity(int m, int n, int *edge, int *size, int *vertexi, int
xvertexj)

If (m, n) is EMPTY, this function examines the cavity at (m, n), deter-
mines its size and returns its bordercolor, which can be BLACK_BORDER,
WHITE_BORDER or GRAY_BORDER. The edge parameter is set to the number
of edge vertices in the cavity. (vertexi[], vertexj[]) hold the vertices
of the cavity. vertexi[] and vertexj[] should be dimensioned to be able
to hold the whole board.

If (m, n) is nonempty, it returns the same result, imagining that the string
at (m, n) is removed. The edge parameter is set to the number of vertices
where the cavity meets the edge in a point outside the removed string.
Here are the public functions in ‘engine/dragon.c’:
e void make_dragons()

This basic function finds all dragons and collects some basic information
about them in the dragon array.

e void show_dragons(void)

Print status info on all dragons. (Can be invoked from gdb)
e void join_dragons(int ai, int aj, int bi, int bj)

Amalgamates the dragon at (ai, aj) to the dragon at (bi, bj).
e static int compute_dragon_status(int i, int j)

Tries to determine whether the dragon at (i, j) is ALIVE, DEAD, or
UNKNOWN. The algorithm is not perfect and can give incorrect answers.
The dragon is judged alive if its genus is >1. It is judged dead if the
genus is <2, it has no escape route, and no adjoining string can be easily
captured. Otherwise it is judged UNKNOWN.

e void compute_escape_potential (void)

Compute the escape potential for the escape2 field (see Section 10.7 [Drag-
ons|, page 76).

10.10 The Second Dragon Array.

In addition to dragon[][] there is a second complementary dragon data array
dragon2[]. In contrast to dragon[][], the information in this one is not duplicated to
every intersection of the board. Instead the dragons are numbered, using the new field id
in dragon[] [], and this number is used as index into the dragon2[] array. This number

Chapter 10: Worms and Dragons 81

can of course not be assigned until all dragon amalgamations have been finished. Neither
is the dragon2[] array initialized until this has been done.

The first thing this array contains is a list of neighbor dragons. The intention of this
information is to be able to modify the perceived safety of a dragon with respect to the
strength of its neighbors. The list of neighbors should be useful for other purposes too.

For the algorithm we refer to the source code and its comments, in the function compute_
supplementary_dragon_data() in ‘dragon.c’.

To access the dragon[] [] array given a dragon id number or the dragon2[] array given
a board coordinate, there are the two handy macros DRAGON(d) and DRAGON2(m, n). Also
notice that the dragon2[] data and the id number only are valid for non-empty dragons,
i.e. not for caves.

Chapter 11: Eyes and Half Eyes 82

11 Eyes and Half Eyes

The purpose of this Chapter is to describe the algorithm used in GNU Go 3.0 to de-
termine eyes. There are actually two alternative algorithms: the graph-based algorithm
in optics.c, and the algorithm based on reading in 1ife.c. The life code is slower than
the graph based algorithm, but more accurate. You can make it the default by using the
option —-life. Otherwise, GNU Go will only call the life code if the graph based algorithm
decides that it needs an expert opinion.

11.1 Local games

Each connected eyespace of a dragon affords a local game which yields a local game tree.
The score of this local game is the number of eyes it yields. Usually if the players take turns
and make optimal moves, the end scores will differ by 0 or 1. In this case, the local game
may be represented by a single number, which is an integer or half integer. Thus if ‘n(0)’
is the score if ‘0’ moves first, both players alternate (no passes) and make alternate moves,
and similarly ‘n(X)’, the game can be represented by ‘{n(0) In(X)}’. Thus {1]1} is an eye,
{211} is an eye plus a half eye, etc.

The exceptional game {20} can occur, though rarely. We call an eyespace yielding this
local game a CHIMERA. The dragon is alive if any of the local games ends up with a score
of 2 or more, so {21} is not different from {311}. Thus {311} is NOT a chimera.

Here is an example of a chimera:

XXXXX
X000X
X0.00X
XX..0X
XX00XX
XXXXX

11.2 Eye spaces

In order that each eyespace be assignable to a dragon, it is necessary that all the dragons
surrounding it be amalgamated (see Section 10.2 [Amalgamation]|, page 72). This is the
function of dragon_eye().

An EYE SPACE for a black dragon is a collection of vertices adjacent to a dragon which
may not yet be completely closed off, but which can potentially become eyespace. If an
open eye space is sufficiently large, it will yield two eyes. Vertices at the edge of the eye
space (adjacent to empty vertices outside the eye space) are called MARGINAL.

Here is an example from a game:

Chapter 11: Eyes and Half Eyes

.
[X
0
|0
.
IX
[X
|

|0

IX .

X

X

O X oo > -

o > -

>

O X O > > -
O oxOo- .

<o -

X .

oo

O < > o>

O xoo-

< <>} OOoOOoOo
< O >XOOoOo X

o > -

54 .
OX X OOOOoOOoOOoOo

X

83

Here the ‘0’ dragon which is surrounded in the center has open eye space. In the middle
of this open eye space are three dead ‘X’ stones. This space is large enough that O cannot
be killed. We can abstract the properties of this eye shape as follows. Marking certain
vertices as follows:

|_
| X
|0
|0
|1
| X
[X
|_
| X
|0

the shape in question has the form:

XXX !

The marginal vertices are marked with an exclamation point (‘!”).
stones inside the eyespace are naturally marked ‘X’.

>

I < OO -

O X oo X -

I < OoOx0o | |
o o |

<o <O

>

O X OO — 0O > X XXX
O X | XXX O0OO0OOoOOo
MMl MO X OOoOOoO X
OX X OOOOoOOOoOOo

The captured ‘X’

The precise algorithm by which the eye spaces are determined is somewhat complex.
Documentation of this algorithm is in the comments in the source to the function make_
domains() in ‘src/optics.c’.

The eyespaces can be conveniently displayed using a colored ascii diagram by running

gnugo -E.

11.3 The eyespace as local game

In the abstraction, an eyespace consists of a set of vertices labelled:

X

Chapter 11: Eyes and Half Eyes 84

Tables of many eyespaces are found in the database ‘patterns/eyes.db’. Each of these
may be thought of as a local game. The result of this game is listed after the eyespace in
the form :max,min, where max is the number of eyes the pattern yields if ‘0’ moves first,
while min is the number of eyes the pattern yields if ‘X’ moves first. The player who owns
the eye space is denoted ‘0’ throughout this discussion. Since three eyes are no better than
two, there is no attempt to decide whether the space yields two eyes or three, so max never
exceeds 2. Patterns with min>1 are omitted from the table.

For example, we have:

Pattern 1

Here notation is as above, except that ‘x” means ‘X’ or EMPTY. The result of the pattern
is not different if ‘X’ has stones at these vertices or not.

We may abstract the local game as follows. The two players ‘0’ and ‘X’ take turns
moving, or either may pass.

RULE 1: ‘0’ for his move may remove any vertex marked ‘!’ or marked ‘.’ .
RULE 2: ‘X’ for his move may replace a ‘.’ by an ‘X’.

RULE 3: ‘X’ may remove a ‘!’. In this case, each ‘.’ adjacent to the "!" which is removed
becomes a "!" . If an "‘X’" adjoins the "!" which is removed, then that "*X’" and any which
are connected to it are also removed. Any ‘.’ which are adjacent to the removed ‘X”’s then
become ‘.’

Thus if ‘0’ moves first he can transform the eyeshape in the above example to:

or VoL,
XXX ! .XXX.

However if ‘X’ moves he may remove the ‘!’ and the ‘.’s adjacent to the ‘!’ become ‘!’
themselves. Thus if ‘X’ moves first he may transform the eyeshape to:

. or ..
XXX ! . XXX!
NOTE: A nuance which is that after the ‘X:1’, ‘0:2’ exchange below, ‘0’ is threatening
to capture three X stones, hence has a half eye to the left of 2. This is subtle, and there are
other such subtleties which our abstraction will not capture. Some of these at least can be

dealt with by a refinements of the scheme, but we will content ourselves for the time being
with a simplified

Chapter 11: Eyes and Half Eyes 85

I-X-XX--X0X0
X - - - - - XX000
[0XXXX--X000
ID000X-0X000
I12. .0000XX0
IX0.XXX.3X00
IX0000000XXDO
I-XX0-0X0--X
X - -X-XXXXXX
I[OXX0X-X00X0

We will not attempt to characterize the terminal states of the local game (some of which
could be seki) or the scoring.

11.4 An example

Here is a local game which yields exactly one eye, no matter who moves first:

Here are some variations, assuming ‘0’ moves first.

! (start position)

(after ‘0’’s move)

X. (nakade)
Here is another variation:

! (start)

Chapter 11: Eyes and Half Eyes 86

! (after ‘0’’s move)

! (after ‘X’’s move)

11.5 Graphs

It is a useful observation that the local game associated with an eyespace depends only
on the underlying graph, which as a set consists of the set of vertices, in which two elements
are connected by an edge if and only if they are adjacent on the Go board. For example
the two eye shapes:

and

though distinct in shape have isomorphic graphs, and consequently they are isomorphic as
local games. This reduces the number of eyeshapes in the database ‘patterns/eyes.db’.

A further simplification is obtained through our treatment of half eyes and false eyes.
Such patterns are tabulated in the database hey.h. During make_worms, which runs before
the eye space analysis, the half eye and false eye patterns are tabulated in the array half_
eye.

A half eye is isomorphic to the pattern (!.) . To see this, consider the following two
eye shapes:

X000000

X000000
and:

XX00000
X0a...0
Xb00000
XXXXXX

Chapter 11: Eyes and Half Eyes 87

These are equivalent eyeshapes, with isomorphic local games {2|1}. The first has shape:

The second eyeshape has a half eye at a which is taken when ‘0’ or ‘X’ plays at ‘b’. This
is found by the topological criterion (see Section 11.7 [Eye Topology], page 87).

000 half eye
OhOo
*0X

and it is recorded in the half_eye array as follows. If (i, j) are the coordinates of the point
‘a’, half_eye[i] [j].type==HALF_EYE and (half_eyel[i] [j].ki, half_eyel[il [j].kj)
are the coordinates of ‘b’.

The graph of the eye_shape, ostensibly ‘. ...’ is modified by replacing the left <.’ by ‘!’.

11.6 Eye shape analysis

The patterns in ‘patterns/eyes.db’ are compiled into graphs represented essentially by
linked lists in ‘patterns/eyes.c’.

Each actual eye space as it occurs on the board is also compiled into a graph. Half eyes
are handled as follows. Referring to the example

XX00000
X0a...0
Xb00000
XXXXXX

repeated from the preceding discussion, the vertex at ‘b’ is added to the eyespace as a
marginal vertex. The adjacency condition in the graph is a macro (in ‘optics.c’): two
vertices are adjacent if they are physically adjacent, or if one is a half eye and the other is
its key point.

In recognize_eyes, each such graph arising from an actual eyespace is matched against
the graphs in ‘eyes.c’. If a match is found, the result of the local game is known. If a
graph cannot be matched, its local game is assumed to be {2]2}.

11.7 Topology of Half Eyes and False Eyes

A HALF EYE is a pattern where an eye may or may not materialize, depending on who
moves first. Here is a half eye for O:

000X
0..X
000X

A FALSE EYE is a cave which cannot become an eye. Here is are two examples of false
eyes for 0:

Chapter 11: Eyes and Half Eyes 88

00X 00X
0.0 0.00
X00 00X

We describe now the topological algorithm used to find half eyes and false eyes.

False eyes and half eyes can locally be characterized by the status of the diagonal in-
tersections from an eye space. For each diagonal intersection, which is not within the eye
space, there are three distinct possibilities:

e occupied by an enemy (X) stone, which cannot be captured.

e cither empty and X can safely play there, or occupied by an X stone that can both be
attacked and defended.

e occupied by an 0 stone, an X stone that can be attacked but not defended, or it’s empty
and X cannot safely play there.

We give the first possibility a value of two, the second a value of one, and the last a value
of zero. Summing the values for the diagonal intersections, we have the following criteria:

e sum >= 4: false eye
e sum == 3: half eye
e sum <= 2: proper eye
If the eye space is on the edge, the numbers above should be decreased by 2. An
alternative approach is to award diagonal points which are outside the board a value of 1.

To obtain an exact equivalence we must however give value 0 to the points diagonally off
the corners, i.e. the points with both coordinates out of bounds.

The algorithm to find all topologically false eyes and half eyes is:

For all eye space points with at most one neighbor in the eye space, evaluate the status
of the diagonal intersections according to the criteria above and classify the point from the
sum of the values.

11.8 False Margins

The following situation is rare but special enough to warrant separate attention:

0000XX
OXaX..

Here ‘a’ may be characterized by the fact that it is adjacent to O’s eyespace, and it is
also adjacent to an X group which cannot be attacked, but that an X move at ’a’ results in
a string with only one liberty. We call this a false margin.

For the purpose of the eye code, O’s eyespace should be parsed as (X), not (X!).

Chapter 11: Eyes and Half Eyes 89

11.9 Functions in ‘optics.c’

Here are the public functions in ‘optics.c’. The statically declared functions are docu-

mented in the source code.

void make_domains(struct eye_data b_eye [MAX_BOARD] [MAX_BOARD], struct
eye_data w_eye [MAX_BOARD] [MAX_BOARD])

This function is called from make_dragons(). It marks the black and white
domains (eyeshape regions) and collects some statistics about each one.

void originate_eye(int i, int j, int m, int n, int *esize, int *msize,
struct eye_data eye [MAX_BOARD] [MAX_BOARD])
originate_eye(i, j, i, j, *size) creates an eyeshape with origin (i, j). the
last variable returns the size. The repeated variables (i, j) are due to the
recursive definition of the function.

static void print_eye(struct eye_data eye [MAX_BOARD] [MAX_BOARD], int i,
int j)

Print debugging data for the eyeshape at (i,j). Useful with GDB.
void compute_eyes(int i, int j, int *max, int *min, int *attacki, int
xattackj, struct eye_data eye[MAX_BOARD] [MAX_BOARD], int add_moves, int
color)

Given an eyespace with origin (i,j), this function computes the minimum
and maximum numbers of eyes the space can yield. If add_moves==1, this
function may add a move_reason for color at a vital point which is found
by the function. If add_moves==0, set color==EMPTY.

void compute_eyes_pessimistic(int i, int j, int *max, int *min, int
*pessimistic_min, int *attacki, int *attackj, int *defendi, int *defendj,
struct eye_data eye [MAX_BOARD] [MAX_BOARD], struct half_eye_data

heye [MAX_BOARD] [MAX_BOARD])

This function works like compute_eyes(), except that it also gives a pes-
simistic view of the chances to make eyes. Since it is intended to be used
from the owl code, the option to add move reasons has been removed.

void propagate_eye (int i, int j, struct eye_data eye[MAX_BOARD] [MAX_
BOARD])

Copies the data at the origin (i, j) to the rest of the eye (certain fields
only).

static int recognize_eye(int i, int j, int *ai, int *aj, int *di, int *dj,
int *max, int *min, struct eye_data eye [MAX_BOARD] [MAX_BOARD], struct
half_eye_data heye [MAX_BOARD] [MAX_BOARD], int add_moves, int color)

Declared static but documented here because of its importance. The life
code supplies an alternative version of this function called recognize_
eye2(). Here (i,j) is the origin of an eyespace. Returns 1 if there is
a pattern in ‘eyes.c’ matching the eyespace, or 0 if no match is found.
If there is a key point for attack, (*ai, *aj) are set to its location, or
(-1, -1) if there is none. Similarly (*di, *dj) is the location of a vital
defense point. *min and *max are the minimum and maximum number of
eyes that can be made in this eyespace respectively. Vital attack/defense

Chapter 11: Eyes and Half Eyes

points exist if and only if *min != *max. If add_moves==1, this function
may add a move_reason for (color) at a vital point which is found by the
function. If add_moves==0, set color==EMPTY.
void add_half_eye(int m, int n, struct eye_data eye [MAX_BOARD] [MAX_
BOARD], struct half_eye_data hey[MAX_BOARD] [MAX_BOARD])

This function adds a half eye or false eye to an eye shape.

e int eye_space(int i, int j)
Used from constraints to identify eye spaces, primarily for late endgame
moves. This returns true if the location is an eye space of either color.

e int proper_eye_space(int i, int j)
Used from constraints to identify proper eye spaces, primarily for late

endgame moves. Returns true if the location is an eye space of either
color and is not marginal.

e int marginal_eye_space(int i, int j)
Used from constraints to identify marginal eye spaces, primarily for late

endgame moves. Returns true if the location is a marginal eye space of
either color.

e void make_proper_eye_space(int i, int j, int color)
Turn a marginal eye space into a proper eye space.

e void remove_half_eye(int m, int n, int color)
Remove a halfeye from an eye shape.

e void remove_eyepoint(int m, int n, int color)

Remove an eye point. This function can only be used before the segmen-
tation into eyespaces.

e int topological_eye(int m, int n, int color, int *ai, int *aj, int *di,
int *dj, struct eye_data b_eye[MAX_BOARD] [MAX_BOARD], struct eye_data
w_eye [MAX_BOARD] [MAX_BOARD], struct half_eye_data heye [MAX_BOARD] [MAX_
BOARD])

See See Section 11.7 [Eye Topology], page 87. Evaluate the eye space at
(m, n) topologically (see Section 11.7 [Eye Topology|, page 87). Returns 2
or less if (m, n) is a proper eye for (color); 3 if (m, n) is a half eye; 4 if (m,
n) is a false eye. (*¥ai, *aj) and (*di, *dj) return the coordinates of an
unsettled diagonal intersection, or an attack or defense point of defense of
an opponent stone occupying a diagonal intersection.

e int evaluate_diagonal_intersection(int m, int n, int color, int *vitali,
int *vitalj)
Evaluate an intersection which is diagonal to an eye space (see Section 11.7
[Eye Topology], page 87). Returns 0 if the opponent cannot safely play at
the vertex; Returns 1 if empty and the opponent can safely play on it, or if
the vertex is occupied by an opponent stone which can be either attacked
or defended. Returns 2 if safely occupied by the opponent. Exception: if
one coordinate is off the board, returns 1; if both are off the board, returns
0. This guarantees correct behavior for diagonal intersections of points on
the edge or in the corner. If the return value is 1, (*vitali, *vitalj)

Chapter 11: Eyes and Half Eyes

returns (m, n) if the vertex is empty, or the vital point of defense if it is
occupied by an opponent stone.

91

Chapter 12: The Pattern Code 92

12 The Pattern Code

12.1 Overview

Several pattern databases are in the patterns directory. This chapter primarily discusses
the patterns in ‘patterns.db’, ‘patterns2.db’, and the pattern files ‘hoshi.db’ etc. which
are compiled from the SGF files ‘hoshi.sgf’ (see Section 12.16 [Joseki Compiler], page 112).
There is no essential difference between these files, except that the ones in ‘patterns.db’
and ‘patterns2.db’ are hand written. They are concatenated before being compiled by
mkpat into patterns.c. The purpose of the separate file ‘patterns2.db’ is that it is handy
to move patterns into a new directory in the course of organizing them. The patterns in
‘patterns.db’ are more disorganized, and are slowly being moved to ‘patterns2.db’.

During the execution of genmove (), the patterns are matched in ‘shapes.c’ in order to
find move reasons.

The same basic pattern format is used by ‘attack.db’, ‘defense.db’, ‘conn.db’,
‘apats.db’ and ‘dpats.db’. However these patterns are used for different purposes. These
databases are discussed in other parts of this documentation. The patterns in ‘eyes.db’
are entirely different and are documented elsewhere (see Chapter 11 [Eyes]|, page 82).

The patterns described in the databases are ascii representations, of the form:
Pattern EB112

?X7.7 jump under
0.*oo0

:8,ed,NULL

Here 'O’ marks a friendly stone, X’ marks an enemy stone, ’.” marks an empty vertex,
" marks O’s next move, 'o’ marks a square either containing 'O’ or empty but not X. (The
symbol 'x’; which does not appear in this pattern, means X’ or ’.”.) Finally ’?’ Indicates
a location where we don’t care what is there, except that it cannot be off the edge of the
board.

The line of -’s along the bottom in this example is the edge of the board itself—this is an
edge pattern. Corners can also be indicated. Elements are not generated for '?’ markers,
but they are not completely ignored - see below.

The line beginning ‘:’ describes various attributes of the pattern, such as its symmetry
and its class. Optionally, a function called a “helper” can be provided to assist the matcher
in deciding whether to accept move. Most patterns do not require a helper, and this field

is filled with NULL.

The matcher in ‘matchpat.c’ searches the board for places where this layout appears
on the board, and the callback function shapes_callback() in ‘shapes.c’ registers the
appropriate move reasons.

After the pattern, there is some supplementary information in the format:

Chapter 12: The Pattern Code 93

:trfno, classification, [values], helper_function

Here trfno represents the number of transformations of the pattern to consider, usually
8 (no symmetry, for historical reasons), or one of | \ /- + X, where the line represents the
axis of symmetry. (E.g. | means symmetrical about a vertical axis.)

The above pattern could equally well be written on the left edge:

| 7X7?.?
|0.*00
[0....
lo....

:8,ed,NULL

The program mkpat is capable of parsing patterns written this way, or for that matter,
on the top or right edges, or in any of the four corners. As a matter of convention all
the edge patterns in ‘patterns.db’ are written on the bottom edge or in the lower left
corners. In the ‘patterns/’ directory there is a program called transpat which can rotate
or otherwise transpose patterns. This program is not built by default—if you think you
need it, make transpat in the ‘patterns/’ directory and consult the usage remarks at the
beginning of ‘patterns/transpat.c’.

12.2 Pattern Attributes

The attribute field in the ‘:’ line of a pattern consists of a sequence of zero or more of the
following characters, each with a different meaning. The attributes may be roughly classified
as constraints, which determine whether or not the pattern is matched, and actions, which
describe what is to be done when the pattern is matched, typically to add a move reason.

12.2.1 Constraint Pattern Attributes

(]

S

Safety of the move is not checked. This is appropriate for sacrifice patterns.
If this classification is omitted, the matcher requires that the stone played
cannot be trivially captured. Even with s classification, a check for legality
is made, though.

In addition to usual check that the stone played cannot be trivially cap-
tured, it is also confirmed that an opponent move here could not be cap-
tured.

It is checked that every friendly (‘0’) stone of the pattern belongs to a
dragon which has matcher_status (see Section 10.7 [Dragons|, page 76)
ALIVE or UNKNOWN. The CRITICAL matcher status is excluded. It is
possible for a string to have ALIVE matcher_status and still be tactically
critical, since it might be amalgamated into an ALIVE dragon, and the

Chapter 12: The Pattern Code

matcher status is constant on the dragon. Therefore, an additional test is
performed: if the pattern contains a string which is tactically critical, and
if ‘¥’ does not rescue it, the pattern is rejected.

It is checked that every friendly (‘0’) stone of the pattern belongs to a
dragon which is classified as DEAD or UNKNOWN.

It is checked that every opponent (‘X’) stone of the pattern belongs to
a dragon with matcher_status ALIVE, UNKNOWN or CRITICAL. Note
that there is an asymmetry with ‘0O’ patterns, where CRITICAL dragons
are rejected.

It is checked that every opponent (‘X’) stone of the pattern belongs to a
dragon which is classified as DEAD or UNKNOWN

12.2.2 Action Attributes

4C7

If two or more distinct O dragons occur in the pattern, the move is given
the move reasons that it connects each pair of dragons. An exception is
made for dragons where the underlying worm can be tactically captured
and is not defended by the considered move.

Add strategical defense move reason for all our dragons and a small shape
bonus. This classification is appropriate for weak connection patterns.

If two or more distinct X dragons occur in the pattern, the move is given
the move reasons that it cuts each pair of dragons.

The move secures territory by blocking it from intrusion.
The move makes territory by expanding, e.g. along the edge.
The move attempts increase influence and create/expand a moyo.

The move strategically defends all O dragons in the pattern, except those
that can be tactically captured and are not tactically defended by this
move. If any O dragon should happen to be perfectly safe already, this
only reflects in the move reason being valued to zero.

The move strategically attacks all X dragons in the pattern.

Standard joseki move. Unless there is an urgent move on the board these
moves are made as soon as they can be. This is equivalent to adding the

94

Chapter 12: The Pattern Code 95

‘d’ and ‘a’ classifications together with a shape bonus of 5 and a minimum
accepted value of 25.

N
Slightly less urgent joseki move. These moves will be made after those
with the ‘J’ classification. This is equivalent to adding the ‘e’ and ‘E’
classifications together with a minimum accepted value of 22.

4t7
Minor joseki move (tenuki OK). This is equivalent to adding the ‘e’ and
‘E’ classifications together with a minimum accepted value of 18.

(U7

Urgent joseki move (never tenuki). This is equivalent to the ‘d’ and ‘a’
classifications together with a shape bonus of 20 and a minimum accepted
value of 50.

A commonly used class is OX (which rejects pattern if either side has dead stones). The
string ‘-’ may be used as a placeholder. (In fact any characters other than the above and
¢, are ignored.)

The types o and O could conceivably appear in a class, meaning it applies only to UN-
KNOWN. X and x could similarly be used together. All classes can be combined arbitrarily.

12.3 Pattern Attributes

The second third field in the ‘:’ line of a pattern is optional and of the form
valuel(x),value2(y),.... The available set of values are as follows.

e terri(x)

Forces the territorial value of the move to be at most x
e minterri(x) :

Forces the territorial value of the move to be at least x
e maxterri(x) :

Forces the territorial value of the move to be at most x.
e value(x) :

Forces the final value of the move to be at least x.
e minvalue(x) maxvalue(x) :

Forces the final value of the move to be at last/most x.
e shape(x) :

Adds x to the move’s shape value.
e followup(x) :

Adds x to the move’s followup value.

The meaning of these values is documented in See Chapter 9 [Move Generation], page 55.

Chapter 12: The Pattern Code 96

12.4 Helper Functions

Helper functions can be provided to assist the matcher in deciding whether to accept
a pattern, register move reasons, and setting various move values. The helper is supplied
with the compiled pattern entry in the table, and the (absolute) position on the board of
the ‘*’ point.

One difficulty is that the helper must be able to cope with all the possible transformations
of the pattern. To help with this, the OFFSET macro is used to transform relative pattern
coordinates to absolute board locations.

The actual helper functions are in ‘helpers.c’. They are declared in ‘patterns.h’.

As an example to show how to write a helper function, we consider wedge_helper.
(This helper does not exist anymore but has been replaced by a constraint, discussed in the
following section. Due to its simplicity it’s still a good example.) The helper begins with a
comment:

/*

70. 70b
L X* aXt
70. 70c

:8,C,wedge_helper
*/

The image on the left is the actual pattern. On the right we've taken this image and
added letters to label (ti, tj), (ai, aj) and (bi, bj). Of course t is always at *, the point
where GNU Go will move if the pattern is adopted.

int

wedge_helper (ARGS)

{
int ai, aj, bi, bj, ci, cj;
int other = OTHER_COLOR(color);
int success = 0;

OFFSET(0, -2, ai, aj);
OFFSET(-1, 0, bi, bj);
OFFSET(1, 0, ci, cj);

if (TRYMOVE(ti, tj, color)) {
if (TRYMOVE(ai, aj, other)) {
if (!plaillaj] || attack(ai, aj, NULL, NULL))
success = 1;
else if (TRYMOVE(bi, bj, color)) {
if (!safe_move(ci, cj, other))
success = 1;
popgo) ;
}
popgo () ;
}

Chapter 12: The Pattern Code 97

popgo () ;
}

return success;

b

The OFFSET lines tell GNU Go the positions of the three stones at a=(ai,aj), b=(bi,bj),
and c=(ci,cj). To decide whether the pattern guarantees a connection, we do some read-
ing. First we use the TRYMOVE macro to place an O at t and let X draw back to a. Then we
try whether O can capture these stones by calling attack(). The test if there is a stone
at a before calling attack() is in this position not really necessary but it’s good practice
to do so, because if the attacked stone should happen to already have been captured while
placing stones, GNU Go would crash with an assertion failure.

If this attack fails we let O connect at b and use the safe_move () function to examine
whether a cut by X at ¢ could be immediately captured. Before we return the result we
need to remove the stones we placed from the reading stack. This is done with the function

popgo ().

12.5 Autohelpers and Constraints

In addition to the hand-written helper functions in ‘helpers.c’, GNU Go can automat-
ically generate helper functions from a diagram with labels and an expression describing a
constraint. The constraint diagram, specifying the labels, is placed below the ":" line and
the constraint expression is placed below the diagram on line starting with a ";". Con-
straints can only be used to accept or reject a pattern. If the constraint evaluates to zero
(false) the pattern is rejected, otherwise it’s accepted (still conditioned on passing all other
tests of course). To give a simple example we consider a connection pattern.

Pattern Conn311

Ox*.
7X0

:8,C,NULL

O*a
7?B0

;oplay_attack_either(*,a,a,B)

Here we have given the label ‘a’ to the empty spot to the right of the considered move
and the label ‘B’ to the ‘X’ stone in the pattern. In addition to these, ‘*’ can also be
used as a label. A label may be any lowercase or uppercase ascii letter except OoXxt. By
convention we use uppercase letters for X stones and lowercase for O stones and empty
intersections. When labeling a stone that’s part of a larger string in the pattern, all stones
of the string should be marked with the label. (These conventions are not enforced by the
pattern compiler, but to make the database consistent and easy to read they should be

followed.)

Chapter 12: The Pattern Code 98

The labels can now be used in the constraint expression. In this example we have a
reading constraint which should be interpreted as "Play an O stone at * followed by an X
stone at a. Accept the pattern if O now can capture either at a or at B (or both strings)."

The functions that are available for use in the constraints are listed in the section ‘Au-
tohelpers Functions’ below. Technically the constraint expression is transformed by mkpat
into an automatically generated helper function in ‘patterns.c’. The functions in the con-
straint are replaced by C expressions, often functions calls. In principle any valid C code
can be used in the constraints, but there is in practice no reason to use anything more than
boolean and arithmetic operators in addition to the autohelper functions. Constraints can
span multiple lines, which are then concatenated.

12.6 Autohelper Actions

As a complement to the constraints, which only can accept or reject a pattern, one can
also specify an action to perform when the pattern has passed all tests and finally has been
accepted.

Example:

Pattern EJ4

Lok, continuation

:8,Ed,NULL

Lok, never play a here

>antisuji(a)

The line starting with ‘>’ is the action line. In this case it tells the move generation
that the move at a should not be considered, whatever move reasons are found by other
patterns. The action line uses the labels from the constraint diagram. Both constraint and
action can be used in the same pattern. If the action only needs to refer to ‘*’, no constraint
diagram is required. Like constraints, actions can span multiple lines.

12.7 Autohelper Functions

The autohelper functions are translated into C code by the program in ‘mkpat.c’. To
see exactly how the functions are implemented, consult the autohelper function definitions
in that file. Autohelper functions can be used in both constraint and action lines.

Chapter 12: The Pattern Code 99

lib(x)
1ib2(x)
1ib3(x)
1ib4 (x)

Number of first, second, third, and fourth order liberties of a worm respectively. See
Chapter 10 [Worms and Dragons], page 67, the documentation on worms for definitions.

x1ib(x)
olib(x)

The number of liberties that an enemy or own stone, respectively, would obtain if played
at the empty intersection x.

xcut (x)
ocut (x)

Calls cut_possible (see Section 18.1 [General Utilities], page 156) to determine whether
‘X’ or ‘0’ can cut at the empty intersection x.
ko (x)
True if x is either a stone or an empty point involved in a ko position.
status (x)
The matcher status of a dragon. status(x) returns an integer that can have the values
ALIVE, UNKNOWN, CRITICAL, or DEAD (see Chapter 10 [Worms and Dragons], page 67).

alive(x)
unknown (x)
critical(x)
dead (x)

Each function true if the dragon has the corresponding matcher status and false otherwise
(see Chapter 10 [Worms and Dragons], page 67).
status(x)
Returns the status of the dragon at ‘x’ (see Chapter 10 [Worms and Dragons|, page 67).
genus (x)

The number of eyes of a dragon. It is only meaningful to compare this value against 0,
1, or 2.

xarea(x)
oarea(x)
xmoyo (x)
omoyo (x)
xterri(x)
oterri(x)

Functions related to various kinds of influence and territory estimations, as described in
See Chapter 17 [Moyo], page 152. xarea(x) evaluates to true if x is either a living enemy

Chapter 12: The Pattern Code 100

stone or an empty point within his "area". oarea(x) is analogous but with respect to our
stones and area. The main difference between area, moyo, and terri is that area is a very
far reaching kind of influence, moyo gives a more realistic estimate of what may turn in to
territory, and terri gives the points that already are believed to be secure territory.

weak (x)

True for a dragon that is perceived as weak. The definition of weak is given in See
Chapter 17 [Moyo], page 152.

attack(x)
defend (x)

Results of tactical reading. attack(x) is true if the worm can be captured, defend(x) is
true if there also is a defending move. Please notice that defend(x) will return false if there
is no attack on the worm.

safe_xmove (x)
safe_omove (x)

True if an enemy or friendly stone, respectively, can safely be played at x. By safe it is
understood that the move is legal and that it cannot be captured right away.

legal_xmove (x)
legal_omove (x)

True if an enemy or friendly stone, respectively, can legally be played at x.

o_somewhere(x,y,z, ...)
x_somewhere(x,y,z, ...)

True if O (respectively X) has a stone at one of the labelled vertices. In the diagram,
these vertices should be marked with a ‘7’.

odefend_against(x,y)
xdefend_against(x,y)

True if an own stone at x would stop the enemy from safely playing at y, and conversely
for the second function.

does_defend(x,y)
does_attack(x,y)

True if a move at x defends/attacks the worm at y. For defense a move of the same color
as y is tried and for attack a move of the opposite color.

xplay_defend(a,b,c,...,z)

Chapter 12: The Pattern Code 101

oplay_defend(a,b,c,...,z)
xplay_attack(a,b,c,...,z)
oplay_attack(a,b,c,...,z)

These functions make it possible to do more complex reading experiments in the con-
straints. All of them work so that first the sequence of moves a,b,c,... is played through
with alternating colors, starting with X or O as indicated by the name. Then it is tested
whether the worm at z can be attacked or defended, respectively. It doesn’t matter who
would be in turn to move, a worm of either color may be attacked or defended. For attacks
the opposite color of the string being attacked starts moving and for defense the same color
starts. The defend functions return true if the worm cannot be attacked in the position
or if it can be attacked but also defended. The attack functions return true if there is a
way to capture the worm, whether or not it can also be defended. If there is no stone
present at z after the moves have been played, it is assumed that an attack has already
been successful or a defense has already failed. If some of the moves should happen to be
illegal, typically because it would have been suicide, the following moves are played as if
nothing has happened and the attack or defense is tested as usual. It is assumed that this
convention will give the relevant result without requiring a lot of special cases.

The special label ‘?” can be used to represent a tenuki. Thus oplay_defend(a,?,b,c)
tries moves by ‘0’ at ‘a’ and ‘b’, as if ‘X’ plays the second move in another part of the board,
then asks if ‘c’ can be defended. The tenuki cannot be the first move of the sequence, nor
does it need to be: instead of oplay_defend(?,a,b,c) you can use xplay_defend(a,b,c).

xplay_defend_both(a,b,c,...,y,2)
oplay_defend_both(a,b,c,...,y,2)
xplay_attack_either(a,b,c,...,y,2)
oplay_attack_either(a,b,c,...,y,2)

These functions are similar to the previous ones. The difference is that the last *two*
arguments denote worms to be attacked or defended simultaneously. Obviously y and z
must have the same color. If either location is empty, it is assumed that an attack has been
successful or a defense has failed. The typical use for these functions is in cutting patterns,
where it usually suffices to capture either cutstone.

The function xplay_defend_both plays alternate moves beginning with an X at ‘a’.
Then it passes the last two arguments to defend_both in ‘engine/utils.c’. This function
checks to determine whether the two strings can be simultaneously defended.

The function xplay_attack_either plays alternate moves beginning with an X move
at ‘a’. Then it passes the last two arguments to attack_either in ‘engine/utils.c’. This
function looks for a move which captures at least one of the two strings. In its current
implementation attack_either only looks for uncoordinated attacks and would thus miss
a double atari.

xplay_break_through(a,b,c,...,x,y,2z)
oplay_break_through(a,b,c,...,x,y,2)

These functions are used to set up a position like

Chapter 12: The Pattern Code 102

.0. .y.
0X0 xXz

and X aims at capturing at least one of x, y, and z. If this succeeds 1 is returned. If it
doesn’t, X tries instead to cut through on either side and if this succeeds, 2 is returned. Of
course the same shape with opposite colors can also be used.

Important notice: x, y, and z must be given in the order they have in the diagram above,
or any reflection and/or rotation of it.

seki_helper(x)

Checks whether the string at ‘x’ can attack any surrounding string. If so, return false
as the move to create a seki (probably) wouldn’t work.

threaten_to_save(x)

Calls add_followup_value to add as a move reason a conservative estimate of the value
of saving the string ‘x’ by capturing one opponent stone.

area_stone(x)

Returns the number of stones in the area around ‘x’.
area_space (x)

Returns the amount of space in the area around ‘x’.

eye(x)
proper_eye (x)
marginal_eye (x)

True if x is an eye space for either color, a non-marginal eye space for either color, or a
marginal eye space for either color, respectively.

antisuji(x)
Tell the move generation that x is a substandard move that never should be played.

same_dragon(x,y)
same_worm(x,y)

Return true if x and y are the same dragon or worm respectively.

dragonsize (x)
wormsize (x)

Number of stones in the indicated dragon or worm.

add_connect_move (x,y)
add_cut_move(x,y)
add_attack_either_move(x,y)
add_defend_both_move(x,y)

Explicitly notify the move generation about move reasons for the move in the pattern.
halfeye(x)

Returns true if the empty intersection at ‘x’ is a half eye.
remove_attack(x)

Inform the tactical reading that a supposed attack does in fact not work.

Chapter 12: The Pattern Code 103

potential_cutstone(x)

True if cutstone2 field from worm data is larger than one. This indicates that saving the
worm would introduce at least two new cutting points.
not_lunch(x,y)
Prevents the misreporting of ‘x” as lunch for ‘y’. For example, the following pattern tells

GNU Go that even though the stone at ‘a’ can be captured, it should not be considered
"lunch" for the dragon at ‘b’, because capturing it does not produce an eye:

X0| bal
0| 0|
ool ool
70/ 70|

> not_lunch(a,b)
vital_chain(x)

Calls vital_chain to determine whether capturing the stone at ‘x’ will result in one
eye for an adjacent dragon. The current implementation just checks that the stone is not a
singleton on the first line.

amalgamate (x,y)
Amalgamate (join) the dragons at ‘x’ and ‘y’ (see Chapter 10 [Worms and Dragons],
page 67).
amalgamate_most_valuable(x,y,z)

Called when (x,y,z) point to three (preferably distinct) dragons, in situations such as
this:

.0.X
X*0X
.0.X

In this situation, the opponent can play at *, preventing the three dragons from becoming
connected. However ‘0’ can decide which cut to allow. The helper amalgamates the dragon
at ‘y’ with either ‘x’ or ‘z’, whichever is largest.

make_proper_eye (x)

This autohelper should be called when ‘x’ is an eyespace which is misidentified as
marginal. It is reclassified as a proper eyespace (see Section 11.2 [Eye Space], page 82).

remove_halfeye (x)

Remove a half eye from the eyespace. This helper should not be run after make_dragons
is finished, since by that time the eyespaces have already been analyzed.

remove_eyepoint (x)

Remove an eye point. This function can only be used before the segmentation into
eyespaces.

owl_topological_eye(x,y)

Here ‘x’ is an empty intersection which may be an eye or half eye for some dragon, and
‘y’ is a stone of the dragon, used only to determine the color of the eyespace in question.

Chapter 12: The Pattern Code 104

Returns the sum of the values of the diagonal intersections, relative to ‘x’, as explained in
See Section 11.7 [Eye Topology], page 87, equal to 4 or more if the eye at ‘x’ is false, 3 if it
is a half eye, and 2 if it is a true eye.

owl_escape_value(x)

Returns the escape value at ‘x’. This is only useful in owl attack and defense patterns
and only if the ‘~—alternative_escape’ option is turned on. Otherwise 0 is returned.

12.8 Attack and Defense Database

The patterns in ‘attack.db’ and ‘defense.db’ are used to assist the tactical reading
in finding moves that attacks or defends worms. The matching is performed during make_
worms (), at the time when the tactical status of all worms is decided. None of the classes
described above are useful in these databases, instead we have two other classes.

D : For each O worm in the pattern that can be tactically captured
(worm[m]|[n].attack_code != 0), the move at ‘*’ is tried. If it
is found to defend the stone, this is registered as a reason
for the move * and the defense point of the worm is set to ‘*’.

A : For each X worm in the pattern, it’s tested whether the move
at * captures the worm. If that is the case, this is
registered as a reason for the move at ‘*’. The attack point of
the worm is set to * and if it wasn’t attacked before, a
defense is searched for.

Furthermore, A patterns can only be used in ‘attack.db’ and D patterns only in
‘defense.db’. Unclassified patterns may appear in these databases, but then they must
work through actions to be effective.

12.9 The Connections Database

The patterns in ‘conn.db’ are used for helping make_dragons() amalgamate worms
into dragons and to some extent for modifying eye spaces. The patterns in this database
use the classifications ‘B’, ‘C’, and ‘e’. ‘B’ patterns are used for finding cutting points,
where amalgamation should not be performed, ‘C’ patterns are used for finding existing
connections, over which amalgamation is to be done, and ‘e’ patterns are used for modifying
eye spaces and reevaluating lunches. There are also some patterns without classification,
which use action lines to have an impact. These are matched together with the ‘C’ patterns.
Further details and examples can be found in See Chapter 10 [Worms and Dragons|, page 67.

We will illustrate these databases by example. In this situation:

X00
0.0

‘X’ cannot play safely at the cutting point, so the ‘0’ dragons are to be amalgamated. Two
patterns are matched here:

Pattern CC204

Chapter 12: The Pattern Code 105

:+,C

0
A
0

; !safe_xmove(A) && 'ko(A) && !'xcut(A)
Pattern CC205

X0
0.

:\,C

AO
0B

;attack(A) || (!'safe_xmove(B) && 'ko(B) && !xcut(B))

The constraints are mostly clear. For example the second pattern should not be matched
if the ‘X’ stone cannot be attacked and ‘X’ can play safely at ‘B’, or if ‘B’ is a ko. The
constraint !xcut(B) means that connection has not previously been inhibited by find_
cuts. For example consider this situation:

00XX
0.0X
X..0
X.00

The previous pattern is matched here twice, yet X can push in and break one of the con-
nections. To fix this, we include a pattern:

Pattern CB11

70X7?
0!0X
?x10
7707

:8,B

?0A7
0a0B
?*b0
7707

Chapter 12: The Pattern Code 106

; lattack(A) && 'attack(B) && !xplay_attack(*,a,b,*) && !xplay_attack(*,b,a,*)]]
After this pattern is found, the xcut autohelper macro will return true at any of the

points ‘¥’ ‘a’ and ‘b’. Thus the patterns CB204 and CB205 will not be matched, and the
dragons will not be amalgamated.

12.10 Connections Functions

Here are the public functions in ‘connections.c’.

e static void cut_connect_callback(int m, int n, int color, struct pattern
xpattern, int 11, void *data)
Try to match all (permutations of) connection patterns at (m,n). For
each match, if it is a B pattern, set cutting point in worm data structure
and make eye space marginal for the connection inhibiting entries of the
pattern. If it is a C pattern, amalgamate the dragons in the pattern.

e void find_cuts(void)
Find cutting points which should inhibit amalgamations and sever the ad-
jacent eye space. This goes through the connection database consulting

only patterns of type B. When such a function is found, the function cut_
connect_callback is invoked.

e void find_connections(void)
Find explicit connection patterns and amalgamate the involved dragons.
This goes through the connection database consulting patterns except those

of type B, E or e. When such a function is found, the function cut_
connect_callback is invoked.

e void modify_eye_spacesl(void)
Find explicit connection patterns and amalgamate the involved dragons.
This goes through the connection database consulting only patterns of

type E (see Section 12.9 [Connections Database], page 104). When such a
function is found, the function cut_connect_callback is invoked.

e void modify_eye_spaces1(void)
Find explicit connection patterns and amalgamate the involved dragons.
This goes through the connection database consulting only patterns of

type e (see Section 12.9 [Connections Database], page 104). When such a
function is found, the function cut_connect_callback is invoked.

12.11 Tuning the Pattern databases

Since the pattern databases, together with the valuation of move reasons, decide GNU
Go’s personality, much time can be devoted to “tuning” them. Here are some suggestions.

If you want to experiment with modifying the pattern database, invoke with the -a
option. This will cause every pattern to be evaluated, even when some of them may be
skipped due to various optimizations.

You can obtain a Smart Go Format (SGF) record of your game in at least two different
ways. One is to use CGoban to record the game. You can also have GNU Go record the
game in Smart Go Format, using the -o option. It is best to combine this with -a. Do not

Chapter 12: The Pattern Code 107

try to read the SGF file until the game is finished and you have closed the game window.
This does not mean that you have to play the game out to its conclusion. You may close
the CGoban window on the game and GNU Go will close the SGF file so that you can read
it.

If you record a game in SGF form using the -o option, GNU Go will add labels to the
board to show all the moves it considered, with their values. This is an extremely useful
feature, since one can see at a glance whether the right moves with appropriate weights are
being proposed by the move generation.

First, due to a bug of unknown nature, it occasionally happens that GNU Go will not
receive the SIGTERM signal from CGoban that it needs to know that the game is over. When
this happens, the SGF file ends without a closing parenthesis, and CGoban will not open
the file. You can fix the file by typing:

echo ")" >>[filename]

at the command line to add this closing parenthesis. Or you could add the) using an editor.

Move values exceeding 99 (these should be rare) can be displayed by CGoban but you
may have to resize the window in order to see all three digits. Grab the lower right margin
of the CGoban window and pull it until the window is large. All three digits should be
visible.

If you are playing a game without the -o option and you wish to analyze a move, you
may still use CGoban’s “Save Game” button to get an SGF file. It will not have the values
of the moves labelled, of course.

Once you have a game saved in SGF format, you can analyze any particular move by
running:

gnugo -1 [filename] -L [move number] -t -a -w

to see why GNU Go made that move, and if you make changes to the pattern database and
recompile the program, you may ask GNU Go to repeat the move to see how the behavior
changes. If you're using emacs, it’s a good idea to run GNU Go in a shell in a buffer (M-x
shell) since this gives good navigation and search facilities.

Instead of a move number, you can also give a board coordinate to -L in order to stop
at the first move played at this location. If you omit the -L option, the move after those in
the file will be considered.

If a bad move is proposed, this can have several reasons. To begin with, each move
should be valued in terms of actual points on the board, as accurately as can be expected
by the program. If it’s not, something is wrong. This may have two reasons. One possibility
is that there are reasons missing for the move or that bogus reasons have been found. The
other possibility is that the move reasons have been misevaluated by the move valuation
functions. Tuning of patterns is with a few exceptions a question of fixing the first kind of
problems.

If there are bogus move reasons found, search through the trace output for the pattern
that is responsible. (Some move reasons, e.g. most tactical attack and defense, do not

Chapter 12: The Pattern Code 108

originate from patterns. If no pattern produced the bogus move reason, it is not a tuning
problem.) Probably this pattern was too general or had a faulty constraint. Try to make
it more specific or correct bugs if there were any. If the pattern and the constraint looks
right, verify that the tactical reading evaluates the constraint correctly. If not, this is either
a reading bug or a case where the reading is too complicated for GNU Go.

If a connecting move reason is found, but the strings are already effectively connected,
there may be missing patterns in ‘conn.db’. Similarly, worms may be incorrectly amalga-
mated due to some too general or faulty pattern in ‘conn.db’. To get trace output from
the matching of patterns in ‘conn.db’ you need to add a second -t option.

If a move reason is missing, there may be a hole in the database. It could also be caused
by some existing pattern being needlessly specific, having a faulty constraint, or being
rejected due to a reading mistake. Unless you are familiar with the pattern databases, it
may be hard to verify that there really is a pattern missing. Look around the databases
to try to get a feeling for how they are organized. (This is admittedly a weak point of
the pattern databases, but the goal is to make them more organized with time.) If you
decide that a new pattern is needed, try to make it as general as possible, without allowing
incorrect matches, by using proper classification from among snOoXx and constraints. The
reading functions can be put to good use. The reason for making the patterns as general
as they can be is that we need a smaller number of them then, which makes the database
much easier to maintain. Of course, if you need too complicated constraints, it’s usually
better to split the pattern.

If a move has the correct set of reasons but still is misevaluated, this is usually not a
tuning problem. There are, however, some possibilities to work around these mistakes with
the use of patterns. In particular, if the territorial value is off because delta_terri() give
strange results, the (min)terri and maxterri values can be set by patterns as a workaround.
This is typically done by the endgame patterns, where we can know the (minimum) value
fairly well from the pattern. If it should be needed, (min)value and maxvalue can be used
similarly. These possibilities should be used conservatively though, since such patterns are
likely to become obsolete when better (or at least different) functions for e.g. territory
estimation are being developed.

In order to choose between moves with the same move reasons, e.g. moves that connect
two dragons in different ways, patterns with a nonzero shape value should be used. These
should give positive shape values for moves that give good shape or good aji and negative
values for bad shape and bad aji. Notice that these values are additive, so it’s important
that the matches are unique.

Sente moves are indicated by the use of the pattern followup value. This can usually
not be estimated very accurately, but a good rule is to be rather conservative. As usual it
should be measured in terms of actual points on the board. These values are also additive
so the same care must be taken to avoid unintended multiple matches.

You can also get a visual display of the dragons using the -T option. The default GNU
Go configuration tries to build a version with color support using either curses or the ansi
escape sequences. You are more likely to find color support in rxvt than xterm, at least on
many systems, so we recommend running:

gnugo -1 [filename] -L [move number] -T

Chapter 12: The Pattern Code 109

in an rxvt window. If you do not see a color display, and if your host is a GNU/Linux
machine, try this again in the Linux console.

Worms belonging to the same dragon are labelled with the same letters. The colors
indicate the value of the field dragon.safety, which is set in ‘moyo.c’.
Green: GNU Go thinks the dragon is alive
Yellow: Status unknown
Blue: GNU Go thinks the dragon is dead
Red: Status critical (1.5 eyes) or weak by the algorithm

in ‘moyo.c’

If you want to get the same game over and over again, you can eliminate the randomness

in GNU Go’s play by providing a fixed random seed with the -r option.

12.12 Implementation

The pattern code in GNU Go is fairly straightforward conceptually, but because the
matcher consumes a significant part of the time in choosing a move, the code is optimized
for speed. Because of this there are implementation details which obscure things slightly.

In GNU Go, the ascii ‘.db’ files are precompiled into tables (see ‘patterns.h’) by a
standalone program ‘mkpat.c’, and the resulting ‘. c’ files are compiled and linked into the
main gnugo executable.

Each pattern is compiled to a header, and a sequence of elements, which are (notionally)
checked sequentially at every position and orientation of the board. These elements are
relative to the pattern ’anchor’ (or origin). One X or O stone is (arbitrarily) chosen to
represent the origin of the pattern. (We cannot dictate one or the other since some patterns
contain only one colour or the other.) All the elements are in co-ordinates relative to this
position. So a pattern matches "at" board position (m,n,0) if the the pattern anchor stone
is on (m,n), and the other elements match the board when the pattern is transformed by
transformation number ‘o’. (See below for the details of the transformations, though these
should not be necessary)

12.13 Symmetry and transformations

In general, each pattern must be tried in each of 8 different permutations, to reflect
the symmetry of the board. But some patterns have symmetries which mean that it is
unnecessary (and therefore inefficient) to try all eight. The first character after the ‘:’ can
be one of ‘8°,1’,°\",*/’, ‘X’, ‘=7, ‘+’, representing the axes of symmetry. It can also be ‘0’,
representing symmetry under 180 degrees rotation.
transformation I - | . \ 1 r

ABC GHI CBA IHG ADG CFI GDA IFC
DEF DEF FED FED BEH BEH HEB HEB
GHI ABC IHG CBA CFI ADG IFC GDA

a b ¢ d e f g h

Then if the pattern has the following symmetries, the following are true:

| c=a, d=b, g=e, h=f

Chapter 12: The Pattern Code 110

Il
0O T T Q

-

b=a,
e=a,
h=a,
a=d,
a=d=e=h, b
a=b=c=d, e=

O"lTIhOQ (9]
Il

+ X O~~~ |
II(D(]?I = O®
s o o H

f
=g=

H O

We can choose to use transformations a,d,f,g as the unique transformations for patterns
with either ‘|’, ‘=’, ‘\’, or ‘/’ symmetry.

Thus we choose to order the transformations a,g,d,f,h,b,e,c and choose first 2 for ‘X’ and
‘+’ the first 4 for ‘|’, ‘=’, ‘/°, and ‘\’, the middle 4 for ‘0’, and all 8 for non-symmetrical
patterns.

Each of the reflection operations (e-h) is equivalent to reflection about one arbitrary axis
followed by one of the rotations (a-d). We can choose to reflect about the axis of symmetry
(which causes no net change) and can therefore conclude that each of e-h is equivalent to
the reflection (no-op) followed by a-d. This argument therefore extends to include - and /
as well as | and \.

12.14 Implementation Details

1. An entry in the pattern header states whether the anchor is an X or an O. This helps
performance, since all transformations can be rejected at once if the anchor stone does
not match. (Ideally, we could just define that the anchor is always O or always X, but
some patterns contain no O’s and some contain no X’s.)

2. The pattern header contains the size of the pattern (ie the co-ordinates of the top left
and bottom right elements) relative to the anchor. This allows the pattern can be
rejected quickly if there is not room for the pattern to fit around the anchor stone
in a given orientation (ie it is too near the edge of the board). The bounding box
information must first be transformed like the elements before it can be tested, and
after transforming, we need to work out where the top-left and bottom-right corners
are.

3. The edge constraints are implemented by notionally padding the pattern with rows or
columns of ‘?” until it is exactly 19 (or whatever the current board size is) elements
wide or high. Then the pattern is quickly rejected by (ii) above if it is not at the edge.
So the example pattern above is compiled as if it was written

"example"

18,80

4. The elements in a pattern are sorted so that non-space elements are checked before
space elements. It is hoped that, for most of the game, more squares are empty, and
so the pattern can be more quickly rejected doing it this way.

Chapter 12: The Pattern Code 111

5. The actual tests are performed using an ’and-compare’ sequence. Each board position
is a 2-bit quantity. %00 for empty, %01 for O, %10 for X. We can test for an exact
match by and-ing with %11 (no-op), then comparing with 0, 1 or 2. The test for ‘o’ is
the same as a test for not-X’, ie not %10. So and with %01 should give 0 if it matches.
Similarly ‘x’ is a test that bit 0 is not set.

12.15 The “Grid” Optimization

The comparisons between pattern and board are performed as 2-bit bitwise operations.
Therefore they can be performed in parallel, 16-at-a-time on a 32-bit machine.

Suppose the board is layed out as follows :

X.0....00
XXXX0.....
.X..000000
X.Xoooooo.
..X...0

which is internally stored internally in a 2d array (binary)

00 10 00 01 00 00 00 00 01 01
10 10 10 10 01 00 00 0O 00 00
00 10 00 00 01 01 01 01 01 01
10 00 10 00 00 00 0O 00 00 00
00 00 00 00 10 00 00 00 01 00

we can compile this to a composite array in which each element stores the state of a 4x4
grid of squares :

PPPPPPP? PPPPPPT?T? ?R??7°°°?7? ...

77001000 00100001 10000100
77101010 10101010 10101001
77001000 00100000 10000001

77001000 00100001
77101010 10101010
77001000 00100000
77001000 10001000

77100010

77000000
PP777?777

Where '7?7’ is off the board.

Chapter 12: The Pattern Code 112

We can store these 32-bit composites in a 2d merged-board array, substituting the illegal
value %11 for ’?77’.

Similarly, for each pattern, mkpat produces appropriate 32-bit and-value masks for the
pattern elements near the anchor. It is a simple matter to test the pattern with a similar
test to (5) above, but for 32-bits at a time.

12.16 The Joseki Compiler

GNU Go includes a joseki compiler in ‘patterns/joseki.c’. This processes an SGF
file (with variations) and produces a sequence of patterns which can then be fed back
into mkpat. The joseki database is currently in files in ‘patterns/’ called ‘hoshi.sgf’,
‘komoku.sgf’, ‘sansan.sgf’, ‘mokuhazushi.sgf’ and ‘takamoku.sgf’. This division can be
revised whenever need arises.

The SGF files are transformed into the pattern database ‘.db’ format by the program
in ‘joseki.c’. These files are in turn transformed into C code by the program in ‘mkpat.c’
and the C files are compiled and linked into the GNU Go binary.

Not every node in the SGF file contributes a pattern. The nodes which contribute
patterns have the joseki in the upper right corner, with the boundary marked with a square
mark and other information to determine the resulting pattern marked in the comments.

The intention is that the move valuation should be able to choose between the available
variations by normal valuation. When this fails the primary workaround is to use shape
values to increase or decrease the value. It is also possible to add antisuji variations to
forbid popular suboptimal moves. As usual constraints can be used, e.g. to condition a
variation on a working ladder.

The joseki format has the following components for each SGF node:

e A square mark (SQ or MA property) to decide how large part of the board should be
included in the pattern.

e A move (‘W or ‘B’ property) with the natural interpretation. If the square mark is

missing or the move is a pass, no pattern is produced for the node.

e Optional labels (LB property), which must be a single letter each. If there is at least
one label, a constraint diagram will be produced with these labels.

e A comment (‘C’ property). As the first character it should have one of the following
characters to decide its classification:
— ‘U’ - urgent move
— ‘S’ or ‘J’ - standard move
— ‘s’ or ‘j’ - lesser joseki
— ‘T’ - trick move
— ‘t’ - minor joseki move (tenuki OK)
— ‘0’ - antisuji (‘A’ can also be used)
The rest of the line is ignored, as is the case of the letter. If neither of these is found,
it’s assumed to be a standard joseki move.
In addition to this, rows starting with the following characters are recognized:

— ‘#’ - Comments. These are copied into the patterns file, above the diagram.

Chapter 12: The Pattern Code 113

;7 - Constraints. These are copied into the patterns file, below the constraint
diagram.

— 7~ Actions. These are copied into the patterns file, below the constraint diagram.

— ‘:7- Colon line. This is a little more complicated, but the colon line of the produced
patterns always start out with ":8,s" for transformation number and sacrifice pat-
tern class (it usually isn’t a sacrifice, but it’s pointless spending time checking for
tactical safety). Then a joseki pattern class character is appended and finally what
is included on the colon line in the comment for the SGF node.

Example: If the comment in the SGF file looks like
F
:C, shape(3)
;xplay_attack(A,B,C,D,*)
the generated pattern will have a colon line
:8,sjC,shape(3)
and a constraint
;xplay_attack(A,B,C,D,*)

12.17 Ladders in Joseki

As an example of how to use autohelpers with the Joseki compiler, we consider an exam-
ple where a Joseki is bad if a ladder fails. Assume we have the taisha and are considering
connecting on the outside with the pattern

But this is bad unless we have a ladder in our favor. To check this we add a constraint
which may look like

;oplay_attack(*,A,B,C,D)
In order to accept the pattern we require that the constraint on the semicolon line
evaluates to true. This particular constraint has the interpretation "Play with alternating

Chapter 12: The Pattern Code 114

colors, starting with ‘0’, on the intersections ‘*’, ‘A’, ‘B’, and ‘C’. Then check whether the
stone at ‘D’ can be captured." l.e. play to this position

and call attack() to see whether the lower ‘X’ stone can be captured. This is not limited
to ladders, but in this particular case the reading will of course involve a ladder.

The constraint diagram above with letters is how it looks in the ‘.db’ file. The joseki
compiler knows how to create these from labels in the SGF node. ‘Cgoban’ has an option
to create one letter labels, but this ought to be a common feature for SGF editors.

Thus in order to implement this example in SGF, one would add labels to the four
intersections and a comment:
;oplay_attack(*,A,B,C,D)
The appropriate constraint (autohelper macro) will then be added to the Joseki ‘.db’
file.

Chapter 13: The DFA pattern matcher 115

13 The DFA pattern matcher

In this chapter, we describe the principles of the gnugo DFA pattern matcher. The aim
of this system is to permit a fast pattern matching when it becomes time critical like in owl
module (Section 15.1 [The Owl Code], page 141). The actual version is still experimental
but is expected to be fully integrated in later versions of gnugo. If you want to test it with
version 3.0 you must run configure --enable-dfa then recompile GNU Go (Chapter 13
[Using DFA], page 115). The basic principle is to generate off line a finite state machine
called a Deterministic Finite State Automaton (Chapter 13 [What is a DFA], page 116) from
the pattern database and then use it at runtime to speedup pattern matching (Chapter 13
[Pattern matching with DFA], page 118 and Chapter 13 [Incremental Algorithm], page 120).

13.0.1 Using DFA

First build the program with ’configure —enable-dfa’, then type 'make’ as usual.

Some .db files will be compiled into DFA’s by the program mkpat. DFA are stored
into C files and compiled with the engine. When a DFA is found, gnugo write "<pattern
database name> —> using dfa" at startup and use the dfa to "filter" patterns. When no
DFA is found, the standard pattern matcher is used.

13.0.2 Scan Path

The board is scanned following a predefined path. The default path is a spiral starting
from the center of the pattern. This path is used both to build the DFA and to scan the
board.

out

out

N .

This path is encoded by two arrays of integers order_i[k] and order_j[k| giving the offset
where to read the values on the board.
Reading the board following a predefined path reduces the two dimentional pattern
matching to a linear text searching problem. This pattern for example:
X7
.07

Chapter 13: The DFA pattern matcher 116

700
scanned following the path
149

238
567

(1,3)->@+1,))->G+1,j+1)->(1, j+1)->(i+2,j+0) —>(i+2, j+1)->(i+2,j+2) ...
gives the string "?7.0X?007??" where "?" means ’don’t care’. We can forget the two dimen-
sional patterns for a time to focus on linear patterns.

13.0.3 What is a DFA

The acronym DFA means Deterministic Finite state Automaton (See
http://wuw.eti.pg.gda.pl/” jandac/thesis/nodel2.html or Hopcroft & Ull-
man "Introduction to Language Theory" for more details). DFA are common tools
in compilers design (Read Aho, Ravi Sethi, Ullman "COMPILERS: Principles,
Techniques and Tools" for a complete introduction), a lot of powerfull text searching
algorithm like Knuth-Morris-Pratt or Boyer-Moore algorithms are based on DFA’s (See
http://www-igm.univ-mlv.fr/~lecroq/string/ for a bibliography of pattern matching
algorithms).

Basically, a DFA is a set of states connected by labeled transitions. The labels are
the values read on the board, in gnugo these values are EMPTY, WHITE, BLACK or
OUT_BOARD, denoted respectively by ’.’,O’’X’ and ’#’.

The best way to represent a dfa is to draw its transition graph: the pattern "?7??7.X"
is recognized by the following DFA:

X X X X

Pattern " ????.X"

This means that starting from state [1], if you read .’’X’ or ’O’ on the board, go to
state [2] and so on until you reach state [5]. From state [5], if you read ’.”, go to state [6]
otherwise go to error state [0]. And so on until you reach state [8]. As soon as you reach
state [8], you recognize Pattern "??7??7..X"

Adding a pattern like "XXo" ('o’ is a wildcard for not 'X’) will transform directly
the automaton by synchronization product (Chapter 13 [Building the DFA], page 119).
Consider the following DFA:

¥

Pattern " ?2???.X"

()
©,

Pattern " XXo"

Chapter 13: The DFA pattern matcher 117

By adding a special error state and completing each state by a transition to error state
when there is none, we transform easily a DFA in a Complete Deterministic Finite state Au-
tomaton (CDFA). The synchronization product (Chapter 13 [Building the DFA], page 119)
is only possible on CDFA’s.

Pattern " ?2?2??.X"

Pattern " XXo"

The graph of a CDFA is coded by an array of states: The O state is the "error" state
and the start state is 1.

state | | 0 | X | # | att

1 2 | 2| 9 | 0 |

2 | 3 | 3 | 3 | 0 |

3 | 4 | 4 | 4 | O

5 | 6 | 0 | 0 | O

6 | 71 0 | 0 | 0 |

7 | 0 | 0 | 8 | 0 |

8 | 0 | 0 | 0 | 0 | Found pattern "?7777..X"
9 | 3| 3 | A | 0|

A B | B | 4 | 0|

B | 5 | 5 | 5 | 0 | Found pattern "XXo"

To each state we associate an often empty list of attributes which is the list of pattern
indexes recognized when this state is reached. In ’dfa.h’ this is basically represented by
two stuctures:

Chapter 13: The DFA pattern matcher 118

/* dfa state */
typedef struct state

{
int next[4]; /* transitions for EMPTY, BLACK, WHITE and OUT_BOARD */
attrib_t *att;

}

state_t;

/* dfa */
typedef struct dfa
{

attrib_t *indexes; /* Array of pattern indexes */
int maxIndexes;

state_t *states; /* Array of states */
int maxStates;

}
dfa_t;

13.0.4 Pattern matching with DFA

Recognizing with a DFA is very simple and thus very fast (See 'scan_for_pattern()’
in the ’engine/matchpat.c’ file).

Starting from the start state, we only need to read the board following the spiral path,
jump from states to states following the transitions labelled by the values read on the board
and collect the patterns indexes on the way. If we reach the error state (zero), it means
that no more patterns will be matched. The worst case complexity of this algorithm is o(m)
where m is the size of the biggest pattern.

Here is an example of scan:

First we build a minimal dfa recognizing these patterns: "X..X", "X???" "X.0X" and
"X?0X". Note that wildcards like *7’,’0’, or 'x’ give multiple out-transitions.

state | | 0 | X | # | att
1 | 0 | 0 | 2 | 0 |
2 | 3 | 10 | 10 | 0 |
3 | 4 | 7 | 9 | 0 |
4 | 5 | 5 | 6 | 0 |
5 | 0 | 0 | 0 | 0 | 2
6 | 0 | 0 | 0 | 0 | 4 2 1
7 | 5 | 5 | 8 | 0 |
8 | 0 | 0 | 0 | 0 | 4 2 3
9 | 5 | 5 | 5 | 0 |
10 | 11 | 11 | 9 | 0 |
11 | 5 | 5 | 12 | O
12 | 0 | 0 | 0 | 0 | 4 2

Chapter 13: The DFA pattern matcher 119

We perform the scan of the string "X..XXO...." starting from state 1:
Current state: 1, substring to scan : X..XXO....

We read an "X’ value, so from state 1 we must go to state 2.

Current state: 2, substring to scan : ..XXO....

We read a ' value, so from state 2 we must go to state 3 and so on ...

Current state: 3, substring to scan : .XX0....
Current state: 4, substring to scan : XX0O....
Current state: 6, substring to scan : X0....

Found pattern 4
Found pattern 2
Found pattern 1

After reaching state 6 where we match patterns 1,2 and 4, there is no out-transitions
so we stop the matching. To keep the same match order as in the standard algorithm, the
patterns indexes are collected in an array and sorted by indexes.

13.0.5 Building the DFA

The most flavouring point is the building of the minimal DFA recognizing a given set of
patterns. To perform the insertion of a new pattern into an already existing DFA one must
completly rebuild the DFA: the principle is to build the minimal CDFA recognizing the new
pattern to replace the original CDFA with its synchronised product by the new one.

We first give a formal definition: Let L be the left CDFA and R be the right one. Let
B be the synchronised product of L by R. Its states are the couples (l,r) where 1is a state
of L and r is a state of R. The state (0,0) is the error state of B and the state (1,1) is its
initial state. To each couple (Lr) we associate the union of patterns recognized in both 1
and r. The transitions set of B is the set of transitions (11,r1)—a—>(12,r2) for each symbol
’a’ such that both 11—a—>12 in L and r1—a—>r2 in R.

The maximal number of states of B is the product of the number of states of L and R
but almost all this states are non reachable from the initial state (1,1).

The algorithm used in function ’sync_product()’ builds the minimal product DFA
only by keeping the reachable states. It recursively scans the product CDFA by following
simultaneously the transitions of L and R. A hast table (gtest) is used to check if a state
(Lr) has already been reached, the reachable states are remapped on a new DFA. The CDFA
thus obtained is minimal and recognizes the union of the two patterns sets.

Chapter 13: The DFA pattern matcher 120

For example these two CDFA’s:

Error state
X

Start

Pattern A

Error state

Give by synchronization product the following one:

Pattern A

It is possible to construct a special pattern database that generates an "explosive" au-
tomaton: the size of the DFA is in the worst case exponential in the number of patterns it
recognizes. But it doesn’t occur in pratical situations: the dfa size tends to be stable. By
stable we mean that if we add a pattern which greatly increases the size of the dfa it also
increases the chance that the next added pattern does not increase its size at all. Never-
theless there are many ways to reduce the size of the DFA. Good compression methods are
explained in Aho, Ravi Sethi, Ullman "COMPILERS: Principles, Techniques and Tools"
chapter Optimization of DFA-based pattern matchers.

13.0.6 Incremental Algorithm

The incremental version of the DFA pattern matcher is not yet implemented in gnugo
but we explain here how it will work. By definition of a deterministic automaton, scanning
the same string will reach the same states every time.

Chapter 13: The DFA pattern matcher 121

Each reached state during pattern matching is stored in a stack top_stack[i] [j] and
state_stack[i] [j] [stack_idx] We use one stack by intersection (i,j). A precomputed
reverse path list allows to know for each couple of board intersections (x,y) its position
reverse(x,y) in the spiral scan path starting from (0,0).

When a new stone is put on the board at (1x,1y), the only work of the pattern matcher
is:

for(each stone on the board at (i,j))
if (reverse(lx-i,ly-j) < top_stack[i][j])
{
begin the dfa scan from the state
state_stack[i] [j] [reverse(1x-i,1ly-j)];
}

In most situations reverse(lx-i,ly-j) will be inferior to top_stack[i][j]. This should speedup
a lot pattern matching.

13.0.7 Some DFA Optimizations

The dfa is constructed to minimize jumps in memory making some assumptions about
the frequencies of the values: the EMPTY value is supposed to appear often on the board,
so the the ’.” transition are almost always successors in memory. The OUT_BOARD are
supposed to be rare, so '#’ transitions will almost always imply a big jump.

Chapter 14: Tactical reading 122

14 Tactical reading

The process of visualizing potential moves done by you and your opponent to learn
the result of different moves is called "reading". GNU Go does three distinct types of
reading: tactical reading which typically is concerned with the life and death of individual
strings, Owl reading which is concerned with the life and death of dragons, and life reading
which attempts evaluate eye spaces. In this Chapter, we document the tactical reading
code, which is in ‘engine/reading.c’. For a summary of the reading functions see See
Section 14.6 [Reading Functions], page 136.

14.1 Reading Basics

In GNU Go, tactical reading is done by the functions in ‘engine/reading.c’. Each of
these functions has a separate goal to fill, and they call each other recursively to carry out
the reading process.

The reading code makes use of a stack onto which board positions can be pushed. The
parameter stackp is zero if GNU Go is examining the true board position; if it is higher
than zero, then GNU Go is examining a hypothetical position obtained by playing several
moves.

The most important public reading functions are attack and find_defense. These are
wrappers for functions do_attack and do_find_defense which are declared statically in
‘reading.c’. The functions do_attack and do_find_defense call each other recursively.

The return codes of the reading (and owl) functions and owl can be 0, 1, 2 or 3. Each
reading function determines whether a particular player (assumed to have the move) can
solve a specific problem, typically attacking or defending a string.

The nonzero return codes are called these names in the source:

#define WIN 3
#tdefine KO_A 2
#define KO_B 1

A return code of WIN means success, 0 failure, while KO_A and KO_B are success
conditioned on ko. A function returns KO_A if the position results in ko and that the
player to move will get the first ko capture (so the opponent has to make the first ko
threat). A return code of KO_B means that the player to move will have to make the first
ko threat.

Many of the reading functions make use of null pointers. For example, a call to
attack(i, j, &ai, &aj) will return WIN if the string at (i, j) can be captured. The
point of attack (in case it is vulnerable) is returned in (ai, aj). However many times
we do not care about the point of attack. In this case, we can substitute a null pointer:
attack(i, j, NULL, NULL).

Depth of reading is controlled by the parameters depth and branch_depth. The depth
has a default value DEPTH (in ‘liberty.h’), which is set to 14 in the distribution, but it may
also be set at the command line using the ‘-D’ or ‘--depth’ option. If depth is increased,
GNU Go will be stronger and slower. GNU Go will read moves past depth, but in doing so
it makes simplifying assumptions that can cause it to miss moves.

Chapter 14: Tactical reading 123

Specifically, when stackp > depth, GNU Go assumes that as soon as the string can get
3 liberties it is alive. This assumption is sufficient for reading ladders.

The branch_depth is typically set a little below depth. Between branch_depth and
depth, attacks on strings with 3 liberties are considered, but branching is inhibited, so
fewer variations are considered.

Currently the reading code does not try to defend a string by attacking a boundary
string with more than two liberties. Because of this restriction, it can make oversights. A
symptom of this is two adjacent strings, each having three or four liberties, each classified
as DEAD. To resolve such situations, a function small_semeai() (in ‘engine/semeai.c’)
looks for such pairs of strings and corrects their classification.

The backfill_depth is a similar variable with a default 10. Below this depth, GNU Go
will try "backfilling" to capture stones. For example in this situation:

.000000. on the edge of the board, 0 can capture X but
00XXXXX0 in order to do so he has to first play at a in
.a0bX.X0 preparation for making the atari at b. This is
———————— called backfilling.

Backfilling is only tried with stackp <= backfill_depth. The parameter backfill_
depth may be set using the ‘-B’ option.

The fourlib_depth is a parameter with a default of only 5. Below this depth, GNU Go
will try to attack strings with four liberties. The fourlib_depth may be set using the ‘~F’
option.

The parameter ko_depth is a similar cutoff. If stackp<ko_depth, the reading code will
make experiments involving taking a ko even if it is not legal to do so (i.e., it is hypothesized
that a remote ko threat is made and answered before continuation). This parameter may
be set using the ‘-K’ option.

A partial list of the functions in ‘reading.c’:

e int attack(int m, int n, int *i, int *j):

The basic function attack(m, n, *i, *j) determines if the string at (m,
n) can be attacked, and if so, (¥i, *j) returns the attacking move, unless
*i and *j are null pointers. (Use null pointers if you are interested in the
result of the attack but not the attacking move itself.) Returns 1 if the
attack succeeds, otherwise 0. Returns KO_A or KO_B if the result depends
on ko: returns KO_A if the attack succeeds provided attacker is willing to
ignore any ko threat. Returns KO_B if attack succeeds provided attacker
has a ko threat which must be answered.

e find_defense(int m, int n, int *i, int *j):

The function find_defense(m, n, *i, *j) attempts to find a move that
will save the string at (m,n). It returns true if such a move is found, with
(*¥i, *j) the location of the saving move (unless (*i, *j) are null point-
ers). It is not checked that tenuki defends, so this may give an erroneous
answer if 'attack(m,n). Returns KO_A or KO_B if the result depends on
ko. Returns KO_A if the string can be defended provided (color) is willing

Chapter 14: Tactical reading 124

to ignore any ko threat. Returns KO_B if (color) has a ko threat which
must be answered.

e safe_move(int i, int j, int color) :

The function safe_move(i, j, color) checks whether a move at (i, j) is
illegal or can immediately be captured. If stackp==0 the result is cached.
If the move only can be captured by a ko, it’s considered safe. This may
or may not be a good convention.

The next few functions are essentially special cases of attack and find_defense. They
are coded individually, and are static in ‘engine/reading.c’.

e attack2(int m, int n, int *i, int *j) :

Determine whether a string with 2 liberties can be captured. Usage is
similar to attack.

e attack3(int m, int n, int *i, int *j) :
Determine whether a string with 3 liberties can be captured. Usage is
similar to attack.

e attack4(int m, int n, int *i, int *j) :
Determine whether a string with 4 liberties can be captured. Usage is
similar to attack.

e defendl(int m, int n, int *i, int *j) :
Determine whether a string with 1 liberty can be rescued. Usage is similar
to find_defense.

e defend2() :
Determine whether a string with 2 liberties can be rescued. Usage is similar
to find_defense.

e defend3() :
Determine whether a string with 3 liberties can be rescued. Usage is similar
to find_defense.

e find_cap2() :

If (m,n) points to a string with 2 liberties, find_cap2(m,n,&i,&j) looks
for a configuration:

where ‘0’ is an element of the string in question. It tries the move at ‘*’
and returns true this move captures the string, leaving (i, j) pointing to
*
e break_chain(int si, int sj, int *i, int *j, int *k, int *1):

The function break_chain(si, sj, *i, *j, *k, *1) returns 1 if part of
some surrounding string is in atari, and if capturing this string results in a
live string at (si, sj). Returns 2 if the capturing string can be taken (as
in a snapback), or the the saving move depends on ignoring a ko threat;
Returns 3 if the saving move requires making a ko threat and winning the

Chapter 14: Tactical reading 125

ko. The pointers (i,j), if not NULL, are left pointing to the appropriate
defensive move. The pointers (k,1), if not NULL, are left pointing to the
boundary string which is in atari.

e break_chain2(int si, int sj, int *i, int *j):
The function break_chain2(si, sj, *i, *j) returns 1 if there is a string
in the surrounding chain having exactly two liberties whose attack leads to

the rescue of (si, sj). Then *i, *j points to the location of the attacking
move. Returns 2 if the attacking stone can be captured, 1 if it cannot.

e snapback(snapback(int si, int sj, int i, int j, int color):

The function snapback(si, sj, i, j, color) considers a move by color
at (i, j) and returns true if the move is a snapback. Algorithm: It removes
dead pieces of the other color, then returns 1 if the stone at (si, sj) has
<2 liberties. The purpose of this test is to avoid snapbacks. The locations
(i, j) and (si,sj) may be either same or different. Also returns 1 if the
move at (i, j) isillegal, with the trace message "ko violation" which is the
only way I think this could happen. It is not a snapback if the capturing
stone can be recaptured on its own, e.g.

XX00000
X*XXXX0

Here ‘0’ capturing at ‘x’ is in atari, but this is not a snapback. Use with
caution: you may want to condition the test on the string being captured
not being a singleton. For example

XXX0000o0000
X0*+XXXXXXX0

is rejected as a snapback, yet ‘0’ captures more than it gives up.

14.2 Hashing of Positions

To speed up the reading process, we note that a position can be reached in several
different ways. In fact, it is a very common occurrence that a previously checked position
is rechecked, often within the same search but from a different branch in the recursion tree.

This wastes a lot of computing resources, so in a number of places, we store away the
current position, the function we are in, and which worm is under attack or to be defended.
When the search for this position is finished, we also store away the result of the search and
which move made the attack or defense succeed.

All this data is stored in a hash table, sometimes also called a transposition table, where
Go positions are the key and results of the reading for certain functions and groups are the
data. You can increase the size of the Hash table using the ‘M’ or ‘--memory’ option see
Section 3.9 [Invoking GNU Gol, page 12.

Chapter 14: Tactical reading 126

The hash table is created once and for all at the beginning of the game by the function
hashtable_new(). Although hash memory is thus allocated only once in the game, the
table is reinitialized at the beginning of each move by a call to hashtable_clear() from
genmove ().

14.2.1 Calculation of the hash value

The hash algorithm is called Zobrist hashing, and is a standard technique for go and
chess programming. The algorithm as used by us works as follows:

1. First we define a go position. This positions consists of
e the actual board, i.e. the locations and colors of the stones
e A ko point, if a ko is going on. The ko point is defined as the empty point where
the last single stone was situated before it was captured.

It is not necessary to specify the color to move (white or black) as part of the position.
The reason for this is that read results are stored separately for the various reading
functions such as attack3, and it is implicit in the calling function which player is to
move.

2. For each location on the board we generate random numbers:
e A number which is used if there is a white stone on this location
e A number which is used if there is a black stone on this location
e A number which is used if there is a ko on this location
These random numbers are generated once at initialization time and then used through-
out the life time of the hash table.

3. The hash key for a position is the XOR of all the random numbers which are applicable
for the position (white stones, black stones, and ko position).

14.2.2 Organization of the hash table

The hash table consists of 3 parts:
e An area which contains so called Hash Nodes. Each hash node contains:
— A go position as defined above.
— A computed hash value for the position
— A pointer to Read Results (see below)
— A pointer to another hash node.

e An area with so called Read Results. These are used to store which function was called
in the go position, which string was under attack or to be defended, and the result of
the reading.

Each Read Result contains:
— the function ID (an int between 0 and 255), the position of the string under attack

and a depth value, which is used to determine how deep the search was when it
was made, packed into one 32 bit integer.

— The result of the search (a numeric value) and a position to play to get the result
packed into one 32 bit integer.

Chapter 14: Tactical reading 127

— A pointer to another Read Result.
e An array of pointers to hash nodes. This is the hash table proper.

When the hash table is created, these 3 areas are allocated using malloc(). When the
hash table is populated, all contents are taken from the Hash nodes and the Read results.
No further allocation is done and when all nodes or results are used, the hash table is full.
Nothing is deleted from the hash table except when it is totally emptied, at which point it
can be used again as if newly initialized.

When a function wants to use the hash table, it looks up the current position using
hashtable_search(). If the position doesn’t already exist there, it can be entered using

hashtable_enter_position().

Once the function has a pointer to the hash node containing a function, it can search
for a result of a previous search using hashnode_search(). If a result is found, it can be
used, and if not, a new result can be entered after a search using hashnode_new_result ().

Hash nodes which hash to the same position in the hash table (collisions) form a simple
linked list. Read results for the same position, created by different functions and different
attacked or defended strings also form a linked list.

This is deemed sufficiently efficient for now, but the representation of collisions could be
changed in the future. It is also not determined what the optimum sizes for the hash table,
the number of positions and the number of results are.

14.2.3 Hash Structures

The basic hash structures are declared in ‘hash.h’.
typedef struct hashposition_t {
Compacttype board[COMPACT_BOARD_SIZE];
int ko_i;
int ko_j;
} Hashposition;
Represents the board and optionally the location of a ko, which is an illegal move. The
player whose move is next is not recorded.

typedef struct {

Hashvalue hashval;
Hashposition hashpos;
} Hash_data;

Represents the return value of a function (hashval) and the board state (hashpos).

typedef struct read_result_t {
unsigned int compressed_data;

int result_ri_rj;
struct read_result_t *next;
} Read_result;

Here the compressed_data field packs into 32 bits the following fields:

komaster: 2 bits (EMPTY, BLACK, WHITE, or GRAY)
kom_i : b5 bits
kom_j : 5 bits

Chapter 14: Tactical reading 128

routine : 4 bits (currently 10 different choices)
i : 5 bits
J : 5 bits
stackp : 5 bits

The komaster and (kom_i,kom_j) field are documented in See Section 14.3 [Ko],
page 131. The integer result_ri_rj encodes:

unsigned char status;
unsigned char result;
unsigned char ri;
unsigned char rj;

When a new result node is created, ’status’ is set to 1 ’open’. This is then set to 2
‘closed” when the result is entered. The main use for this is to identify open result nodes
when the hashtable is partially cleared. Another potential use for this field is to identify
repeated positions in the reading, in particular local double or triple kos.

typedef struct hashnode_t {

Hash_data key;
Read_result * results;
struct hashnode_t * next;

} Hashnode;

The hash table consists of hash nodes. Each hash node consists of The hash value for
the position it holds, the position itself and the actual information which is purpose of the
table from the start.

There is also a pointer to another hash node which is used when the nodes are sorted
into hash buckets (see below).

typedef struct hashtable {

size_t hashtablesize; /* Number of hash buckets */

Hashnode *x* hashtable; /* Pointer to array of hashnode lists */
int num_nodes; /* Total number of hash nodes */

Hashnode * all_nodes; /* Pointer to all allocated hash nodes. */
int free_node; /* Index to next free node. */

int num_results; /* Total number of results */
Read_result * all_results; /* Pointer to all allocated results. */
int free_result; /* Index to next free result. */

} Hashtable;
The hash table consists of three parts:

e The hash table proper: a number of hash buckets with collisions being handled by a
linked list.

e The hash nodes. These are allocated at creation time and are never removed or real-
located in the current implementation.

e The results of the searches. Since many different searches can be done in the same
position, there should be more of these than hash nodes.

Chapter 14: Tactical reading 129

14.2.4 Hash Functions

The following functions are defined in ‘hash.c’:
e void hash_init()
Initialize the entire hash system.
e int hashdata_compare(Hash_data *keyl, Hash_data *key2)

Returns 0 if *keyl == xkey2, 2 if the hashvalues differ, or 1 if only the
hashpositions differ. This adheres (almost) to the standard compare func-
tion semantics which are used e.g. by the comparison functions used in

gsort().
e void hashposition_dump(Hashposition *pos, FILE *outfile)

Dump an ASCII representation of the contents of a Hashposition onto the
FILE outfile.

e int hashdata_diff_dump(Hash_data *keyl,Hash_data *key2)

Compare two Hashdata structs. If equal: return zero. If not: dump a
human readable summary of any differences to stderr. The return value is
the same as for hashdata_compare. This function is primarily intended to
be used in assert statements.

e void hashdata_recalc(Hash_data *target, Intersection board [MAX_
BOARD] [MAX_BOARD], int koi, int koj)

Calculate the compactboard and the hashvalue in one function. They are
always used together and it saves us a loop and a function call.

e void hashdata_set_ko(Hash_data *hd, int i, int j)
Set or remove a ko at (i, j).

e void hashdata_remove_ko(Hash_data *hd)
Remove any ko from the hash value and hash position.

e void hashdata_invert_stone(Hash_data *hd, int i, int j, int color)
Set or remove a stone of COLOR at (I, J) in a Hash_data.

e void read_result_dump(Read_result *result, FILE *outfile)

Dump an ASCII representation of the contents of a Read_result onto the
FILE outfile.

e void hashnode_dump(Hashnode *node, FILE *outfile)

Dump an ASCII representation of the contents of a Hashnode onto the
FILE outfile.
e int hashtable_init(Hashtable *table, int tablesize, int num_nodes, int
num_results)

Initialize a hash table for a given total size and size of the hash table.
Returns 0 if something went wrong. Just now this means that there wasn’t
enough memory available.

e Hashtable * hashtable_new(int tablesize, int num_nodes, int num_results)

Allocate a new hash table and return a pointer to it. Return NULL if there
is insufficient memory.

Chapter 14: Tactical reading 130

e void hashtable_clear (Hashtable *table)
Clear an existing hash table.
e void hashtable_clear_if_full (Hashtable *table)

Clear an existing hash table only if it happens to be full. By full we mean
that we are either out of positions or read results.

e Hashnode * hashtable_enter_position(Hashtable *table, Hash_data *hd)

Enter a position with a given hash value into the table. Return a pointer
to the hash node where it was stored. If it is already there, don’t enter it
again, but return a pointer to the old one.

e Hashnode * hashtable_search(Hashtable *table, Hash_data *hd)

Given a Hashposition and a Hash value, find the hashnode which contains
this position with the given hash value.

e void hashtable_dump(Hashtable *table, FILE *outfile)

Dump an ASCII representation of the contents of a Hashtable onto the
FILE outfile.

e Read_result * hashnode_search(Hashnode *node, int routine, int i, int j)

Search the result list in a hash node for a particular result. This result is
from routine (the calling function) at (i, j) and reading depth stackp.
All these numbers must be unsigned, and 0<= x <= 255).

e Read_result * hashnode_new_result(Hashtable *table, Hashnode *node, int
routine, int i, int j)
Enter a new Read_result into a Hashnode. We already have the node, now
we just want to enter the result itself. We will fill in the result itself later,
so we only need the routine number for now.
The following macros are defined in ‘hash.h’

e rr_get_routine(Read_result rr)

e rr_get_pos_i(Read_result rr)

e rr_get_pos_j(Read_result rr)

e rr_get_stackp(Read_result rr)
Get the constituent parts of a Read_result.

The following macros and functions are defined in ‘engine/reading.c’:
e static int get_read_result(int routine, int *si, int *sj, Read_result
*xread_result)
Return a Read_result for the current position, routine and location. For
performance, the location is changed to the origin of the string.
e READ_RETURNO(Read_result *read_result)
Cache a negative read result.
e READ_RETURN(Read_result *read_result, int *pointi, int *pointj, int
resulti, int resultj, int value)
If pointi and pointj are not null pointers, then give (xpointi, *pointj)
the values (resulti, resultj). Then cache the read_result. Clear the
hashtable if full and return value.

Chapter 14: Tactical reading 131

14.2.5 Persistent Reading Cache

Some reading calculations can be safely saved from move to move.

The function store_persistent_cache() is called only by attack and find_defense,
never from their static recursive counterparts do_attack and do_defend. The function
store_persistent_reading_cache() attempts to cache the most expensive reading re-
sults. The function search_persistent_reading_cache attempts to retrieve a result from
the cache.

If all cache entries are occupied, we try to replace the least useful one. This is indicated
by the score field, which is initially the number of nodes expended by this particular reading,
and later multiplied by the number of times it has been retrieved from the cache.

Once a (permanent) move is made, a number of cache entries immediately become in-
valid. These are cleaned away by the function purge_persistent_reading_cache(). To
have a criterion for when a result may be purged, the function store_persistent_cache ()
computes the reading shadow and active area. If a permanent move is subsequently played
in the active area, the cached result is invalidated. We now explain this algorithm in detail.

The reading shadow is the concatenation of all moves in all variations, as well as locations
where an illegal move has been tried.

Once the read is finished, the reading shadow is expanded to the active area which may
be cached. The intention is that as long as no stones are played in the active area, the
cached value may safely be used.

Here is the algorithm used to compute the active area. This algorithm is in the function
store_persistent_reading cache(). The most expensive readings so far are stored in
the persistent cache.

e The reading shadow and the string under attack are marked with the character ‘1’. We
also include the successful move, which is most often a part of the reading shadow, but
sometimes not, for example with the function attack1().

o Next the reading shadow is expanded by marking strings and empty vertices adjacent
to the area marked ‘1’ with the character ‘2’.

e Next vertices adjacent to empty vertices marked ‘2’ are labelled with the character ‘3’.
e Next all vertices adjacent to previously marked vertices. These are marked ‘-1’ instead
of the more logical ‘4’ because it is slightly faster to code this way.

e If the stack pointer is >0 we add the moves already played from the moves stack with
mark 4.

14.3 Ko Handling

The principles of ko handling are the same for tactical reading and owl reading.

We have already mentioned (see Section 14.1 [Reading Basics|, page 122) that GNU Go
uses a return code of KO_A or KO_B if the result depends on ko. The return code of KO_B
means that the position can be won provided the player whose move calls the function
can come up with a sufficiently large ko threat. In order to verify this, the function must
simulate making a ko threat and having it answered by taking the ko even if it is illegal.
We call such an experimental taking of the ko a conditional ko capture.

Chapter 14: Tactical reading 132

Conditional ko captures are accomplished by the function tryko (). This function is like
trymove () except that it does not require legality of the move in question.

The static reading functions, and the global functions do_attack and do_find_defense
have arguments komaster, kom_i and kom_j. These mediate ko captures to prevent the
occurrence of infinite loops.

Normally komaster is EMPTY but it can also be BLACK, WHITE or GRAY. The
komaster is set to COLOR when COLOR makes a conditional ko capture. In this case
kom_i, kom_j is set to the location of the captured ko stone.

If the opponent is komaster, the reading functions will not try to take the ko at kom_i,
kom_j. Also, the komaster is normally not allowed to take another ko. The exception is a
nested ko, characterized by the condition that the captured ko stone is at distance 1 both
vertically and horizontally from (kom_i, kom_j), which is the location of the last stone
taken by the komaster. Thus in this situation:

.0X

0X*X
OmOX

00

Here if ‘m’ is the location of (kom_i,kom_j), then the move at ‘*’ is allowed.

The rationale behind this rule is that in the case where there are two kos on the board,
the komaster cannot win both, and by becoming komaster he has already chosen which ko
he wants to win. But in the case of a nested ko, taking one ko is a precondition to taking
the other one, so we allow this.

If the komaster’s opponent takes a ko, then both players have taken one ko. In this case
‘komaster’ is set to GRAY and after this further ko captures are not allowed.

If the ko at (kom_i, kom_j) is filled, then the komaster reverts to EMPTY.

The komaster scheme may be summarized as follows. It is assumed that ‘0’ is about to
move.

e 1. Komaster is EMPTY.
— Unconditional ko capture is allowed. Komaster remains EMPTY.

— Conditional ko capture is allowed. Komaster is set to ‘0" and (kom_i, kom_j) to
the location of the ko, where a stone was just removed.

e Komaster is O:

— Only nested ko captures are allowed.

— If komaster fill the ko at (kom_i,kom_j) then komaster reverts to EMPTY.
e Komaster is X:

— Play at (kom_i,kom_j) is not allowed. Any other ko capture is allowed. If ‘0’
takes another ko, komaster becomes GRAY.

e Komaster is GRAY:

— Ko captures are not allowed. If the ko at (kom_i ,kom_j) is filled then the komaster
reverts to EMPTY.

Chapter 14: Tactical reading 133

14.4 A Ko Example

To see the komaster scheme in action, consider this position from the file
‘regressions/games/life_and_death/tripod9.sgf’. We recommend studying this
example by examining the variation file produced by the command:

gnugo -1 tripod9.sgf --decidedragon C3 -o vars.sgf

In the lower left hand corner, there are kos at A2 and B4. Black is unconditionally dead
because if W wins either ko there is nothing B can do.

< oo -
o -

000 .
0.

=N W oo N oo
M < OO oOo -
< 0o o - ..

=] .
o >Oo-

CDEFGH

This is how the komaster scheme sees this. B (i.e. X) starts by taking the ko at B4. W
replies by taking the ko at Al. The board looks like this:

>~ o -

000 .
0 .

< OO oo
><DO‘ « .

=N WD ooy N
O 0o - .

= .
oo > -

CDEFGH
Now any move except the ko recapture (currently illegal) at Al loses for B, so B retakes

the ko and becomes komaster. The board looks like this:

komaster: BLACK
(kom_i, kom_j): A2

< oo -
>~ o -

000 .
0 .

=N WD ooy N 0o
M OoOoOoo -
<o o - ..

=<
oo -

CDEFGH

W takes the ko at B3 after which the komaster is GRAY and ko recaptures are not
allowed.

Chapter 14: Tactical reading 134

N W oo N
< O o- .

= <.

O.
MM OOOO -
< O O - .o

W o X>Oo:-

0
0

komaster: GRAY
(kom_i, kom_j): B4

00 .

CDEFGH

Since X is not allowed any ko recaptures, there is nothing he can do and he is found
dead. Thus the komaster scheme produces the correct result.

We now consider an example to show why the komaster is reset to EMPTY if the ko is
resolved in the komaster’s favor. This means that the ko is filled, or else that is becomes
no longer a ko and it is illegal for the komaster’s opponent to play there.

The position resulting under consideration is in the file ‘regressions/games/ko5.sgf’.
This is the position:

XX
X
X
0

F G

O OO > -

X

X
X
X

HJK

> O o > X

=

XX XM OOOOoOOoO
<o . -
=N WHd oo N o

N

We recommend studying this example by examining the variation file produced by the

command:

gnugo -1 kob.sgf --quiet --decidestring L1 -o vars.sgf
The correct resolution is that H1 attacks L1 while K2 defends it with ko (code KO_A).
After Black (X) takes the ko at K3, white can do nothing but retake the ko conditionally,
becoming komaster. B cannot do much, but in one variation he plays at K4 and W takes
at H1. The following position results:
. 008

>l .

X
X
X

0

Q000 XX >X-

F

X
X

O < > -

O O > X X
< O O >

X
X .
0.0
HJK

. 0.

L

~

0
X

X

< <<} OOoOo
=N W oo

MN

Now it is important the ‘0’ is no longer komaster. Were ‘0’ still komaster, he could
capture the ko at N3 and there would be no way to finish off B.

The following alternate schemes have been proposed. It is assumed that ‘0’ is the player
about to move.

Chapter 14: Tactical reading 135

14.4.1 Essentially the 2.7.232 scheme.

o Komaster is EMPTY.
— Unconditional ko capture is allowed. Komaster remains EMPTY.

— Conditional ko capture is allowed. Komaster is set to O and (kom_i, kom_j) to
the location of the ko, where a stone was just removed.

e Komaster is O:

— Conditional ko capture is not allowed.

— Unconditional ko capture is allowed. Komaster parameters unchanged.
e Komaster is X:

— Conditional ko capture is not allowed.

— Unconditional ko capture is allowed except for a move at (kom_i, kom_j). Ko-
master parameters unchanged.

14.4.2 Revised 2.7.232 version

e Komaster is EMPTY.
— Unconditional ko capture is allowed. Komaster remains EMPTY.

— Conditional ko capture is allowed. Komaster is set to ‘0’ and (kom_i, kom_j) to
the location of the ko, where a stone was just removed.

e Komaster is ‘0’:

— Ko capture (both kinds) is allowed only if after playing the move, is_ko(kom_1i,
kom_j, X) returns false. In that case, (kom_i, kom_j) is updated to the new ko
position, i.e. the stone captured by this move.

e Komaster is X:
— Conditional ko capture is not allowed.

— Unconditional ko capture is allowed except for a move at (kom_i, kom_j). Ko-
master parameters unchanged.

14.5 Superstrings

A superstring is an extended string, where the extensions are through the following kinds
of connections:
1. Solid connections (just like ordinary string).
00

2. Diagonal connection or one space jump through an intersection where an opponent
move would be suicide or self-atari.

0.0
X0X
X.X

3. Bamboo joint.

Chapter 14: Tactical reading 136

00
00
4. Diagonal connection where both adjacent intersections are empty.
.0
0.
5. Connection through adjacent or diagonal tactically captured stones. Connections of this

type are omitted when the superstring code is called from ‘reading.c’, but included
when the superstring code is called from ‘owl.c’.

Like a dragon, a superstring is an amalgamation of strings, but it is a much tighter orga-
nization of stones than a dragon, and its purpose is different. Superstrings are encountered
already in the tactical reading because sometimes attacking or defending an element of the
superstring is the best way to attack or defend a string. This is in contrast with dragons,
which are ignored during tactical reading.

14.6 Reading Functions

Here we list the publically callable functions in ‘reading.c’. The return codes of these
functions are explained elsewhere (see Section 14.1 [Reading Basics|, page 122).
e attack(si, sj, *i, *j)

Determines if the string at (m, n) can be captured, and if so, (*i, *j) returns
the attacking move, unless (*i, *j) are null pointers. Use null pointers if
you are interested in the result of the attack but not the attacking move
itself. The string is assumed to be alive if it can get five liberties—fewer if
stackp is large.

— Returns 1 if the attack succeeds unconditionally
— Returns 0 if the attack fails unconditionally

— Returns 2 if the attack succeeds provided attacker is willing to ignore
any ko threat (the attacker makes the first ko capture).

— Returns 3 if attack succeeds provided attacker has a ko threat which
must be answered (the defender makes the first ko capture).

e find_defense(m, n, *i, *j)

Attempts to find a move that will save the string at (m, n). It returns 1
if such a move is found, with (*i, *j) the location of the saving move,
unless (*i, *j) are null pointers. It is not checked that tenuki defends, so
this may give an erroneous answer if !'attack(m,n). Returns 2 or 3 if the
result depends on ko. Returns 2 if the string can be defended provided the
defender is willing to ignore any ko threat. Returns 3 if the defender wins
by having a ko threat which must be answered.

e int attack_and_defend(int si, int sj, int *attack_code, int *attacki, int
xattackj,int *defend_code, int *defendi, int *defendj)

This is a frontend to the attack() and find_defense() which guarantees
a consistent result. If a string cannot be attacked, 0 is returned and acode
is 0. If a string can be attacked and defended, WIN is returned, acode and
dcode are both non-zero, and (ai, aj), (di, dj) both point to vertices on

Chapter 14: Tactical reading 137

the board. If a string can be attacked but not defended, 0 is again returned,
acode is non-zero, dcode is 0, and (ai, aj) point to a vertex on the board.
This function in particular guarantees that if there is an attack, it will
never return (di, dj) = (-1, -1), which means the string is safe without
defense. Separate calls to attack() and find_defense () may occasionally
give this result, due to irregularities introduced by the persistent reading
cache.
e attack_either(ai, aj, bi, bj)

returns true if there is a move which guarantees that at least one of the
strings (ai, aj) and (bi, bj) can be captured. A typical application for
this is in connection patterns, where after a cut it suffices to capture one
of the cutting stones. The current implementation looks only for uncoor-
dinated attacks and is not even sufficient to find a double atari.

e defend_both(ai, aj, bi, bj)
Returns true if both the strings (ai, aj) and (bi, bj) can be defended
simultaneously or if there is no attack. A typical application for this is in
connection patterns, where after a cut it’s necessary to defend both cutting
stones.

e int break_through(int ai, int aj, int bi, int bj, int ci, int cj)
Returns 1 if a position can succesfully be broken through and 2 if it can
be cut. The position is assumed to have the shape (the colors may be

reversed)
.0. dbe
0X0 aFc

It is ‘X’ to move and try to capture at least one of ‘a’, ‘b’, and ‘c’. If
this succeeds, ‘X’ is said to have broken through the position. Otherwise
‘X’ may try to cut through the position, which means keeping ‘F’ safe and
getting a tactically safe string at either ‘d’ or ‘e’. Important: ‘a’, ‘b’, and
‘c’ must be given in the correct order.
e int atari_atari(int color, int *i, int *j, int save_verbose)

Looks for a series of ataris on strings of the other color culminating in
the capture of a string which is thought to be invulnerable by the reading
code. Such a move can be missed since it may be that each string involved
individually can be rescued, but nevertheless one of them can be caught.
The simplest example is a double atari. The return value is the size of the
smallest opponent worm. A danger with this scheme is that the first atari
tried might be irrelevant to the actual combination. To avoid this, once
we’ve found a combination, we mark the first move as forbidden, then try
again. If no combination of the same size or larger turns up, then the first
move was indeed essential. Returns the size of the smallest of the worms
under attack.

e int atari_atari_confirm_safety(int color, int ti, int tj, int *i, int *j,
int minsize)

Uses the atari_atari code to detect blunders. Ask whether there appears
any combination attack which would capture at least minsize stones after

Chapter 14: Tactical reading 138

playing at (ti, tj). If this happens, (i, *j) points to a defensive move
which prevents this blunder.

e int atari_atari_try_combination(int color, int ai, int aj, int bi, int bj)
Ask the atari_atari code if after color plays at (ai,aj) and other plays at
(bi,bj) there appears any combination attack. Returns the size of the
combination.

14.7 Debugging the reading code

The reading code searches for a path through the move tree to determine whether a
string can be captured. We have a tool for investigating this with the ‘--decidestring’
option. This may be run with or without an output file.

Simply running
gnugo -t -1 [input file name] -L [movenumber] --decidestring [location]

will run attack() to determine whether the string can be captured. If it can, it will also
run find_defense() to determine whether or not it can be defended. It will give a count
of the number of variations read. The ‘-t’ is necessary, or else GNU Go will not report its
findings.

If we add ‘-o output file’ GNU Go will produce an output file with all variations con-
sidered. The variations are numbered in comments.

This file of variations is not very useful without a way of navigating the source code.
This is provided with the GDB source file, listed at the end. You can source this from GDB,
or just make it your GDB init file.

If you are using GDB to debug GNU Go you may find it less confusing to compile without
optimization. The optimization sometimes changes the order in which program steps are ex-
ecuted. For example, to compile ‘reading. c’ without optimization, edit ‘engine/Makefile’
to remove the string -02 from the file, touch ‘engine/reading.c’ and make. Note that the
Makefile is automatically generated and may get overwritten later.

If in the course of reading you need to analyze a result where a function gets its value
by returning a cached position from the hashing code, rerun the example with the hashing
turned off by the command line option ‘--hash 0’. You should get the same result. (If you
do not, please send us a bug report.) Don’t run ‘--hash 0’ unless you have a good reason
to, since it increases the number of variations.

With the source file given at the end of this document loaded, we can now navigate the
variations. It is a good idea to use cgoban with a small ‘~fontHeight’, so that the variation
window takes in a big picture. (You can resize the board.)

Suppose after perusing this file, we find that variation 17 is interesting and we would
like to find out exactly what is going on here.

The macro ’jt n’ will jump to the n-th variation.

(gdb) set args -1 [filename] -L [move number] --decidestring [location]
(gdb) tbreak main

Chapter 14: Tactical reading 139

(gdb) run
(gdb) jt 17

will then jump to the location in question.

Actually the attack variations and defense variations are numbered separately. (But
find_defense() is only run if attack() succeeds, so the defense variations may or may
not exist.) It is redundant to have to tbreak main each time. So there are two macros avar
and dvar.

(gdb) avar 17
restarts the program, and jumps to the 17-th attack variation.
(gdb) dvar 17

jumps to the 17-th defense variation. Both variation sets are found in the same sgf file,
though they are numbered separately.

Other commands defined in this file:

dump will print the move stack.
nv moves to the next variation
ascii i j converts (i,j) to ascii

2
HHHH .gdbinit file AR
g
this command displays the stack

define dump

set dump_stack()

end

display the name of the move in ascii

define ascii

set gprintf ("%o%m\n",$arg0,$argl)

end

display the all information about a dragon

define dragon

set ascii_report_dragon("$arg0")

end

define worm

Chapter 14: Tactical reading 140

set ascii_report_worm("$arg0")
end

move to the next variation

define nv
tbreak trymove
continue
finish

next

end

move forward to a particular variation

define jt

while (count_variations < $arg0)
nv

end

nv

dump

end

restart, jump to a particular attack variation

define avar

delete

tbreak sgffile_decidestring
run

tbreak attack

continue

jt $arg0

end

restart, jump to a particular defense variation

define dvar

delete

tbreak sgffile_decidestring
run

tbreak attack

continue

finish

next 3

jt $arg0

end

Chapter 15: Life and Death Reading 141

15 Life and Death Reading

GNU Go does two very different types of life and death reading. First, there is the OWL
code (Optics with Limit Negotiation) which attempts to read out to a point where the code
in ‘engine/optics.c’ (see Chapter 11 [Eyes|, page 82) can be used to evaluate it.

Secondly, there is the code in ‘engine/life.c’ which is a potential replacement for the
code in ‘optics.c’. It attempts to evaluate eyespaces more accurately than the code in
‘optics.c’, but since it is fairly slow, it is partially disabled unless you run GNU Go with
the option ‘--1ife’. The default use of the life code is that it can be called from ‘optics.c’
when the graph based life and death code concludes that it needs an expert opinion.

Like the tactical reading code, a persistent cache is employed to maintain some of the
owl data from move to move. This is an essential speedup without which GNU Go would
play too slowly.

15.1 The Owl Code

The life and death code in ‘optics.c’, described elsewhere (see Chapter 11 [Eyes],
page 82), works reasonably well as long as the position is in a terminal position, which we
define to be one where there are no moves left which can expand the eye space, or limit
it. In situations where the dragon is surrounded, yet has room to thrash around a bit
making eyes, a simple application of the graph-based analysis will not work. Instead, a bit
of reading is needed to reach a terminal position.

The defender tries to expand his eyespace, the attacker to limit it, and when neither finds
an effective move, the position is evaluated. We call this type of life and death reading Optics
With Limit-negotiation (OWL). The module which implements it is in ‘engine/owl.c’.

There are two reasonably small databases ‘patterns/owl_defendpats.db’ and
‘patterns/owl_attackpats.db’ of expanding and limiting moves. The code in ‘owl.c’
generates a small move tree, allowing the attacker only moves from ‘owl_attackpats.db’,
and the defender only moves from ‘owl_defendpats.db’. In addition to the moves
suggested by patterns, vital moves from the eye space analysis are also tested.

A third database, ‘owl_vital_apats.db’ includes patterns which override the eyespace
analysis done by the optics code. Since the eyeshape graphs ignore the complications of
shortage of liberties and cutting points in the surrounding chains, the static analysis of
eyespace is sometimes wrong. The problem is when the optics code says that a dragon
definitely has 2 eyes, but it isn’t true due to shortage of liberties, so the ordinary owl
patterns never get into play. In such situations owl_vital_apats.db is the only available
measure to correct mistakes by the optics. Currently the patterns in ‘owl_vital_apats.db’
are only matched when the level is 9 or greater.

The owl code is tuned by editing these three pattern databases, principally the first two.

A node of the move tree is considered terminal if no further moves are found from
‘apats.db’ or ‘dpats.db’, or if the function compute_eyes_pessimistic() reports that
the group is definitely alive or dead. At this point, the status of the group is evaluated.
The functions owl_attack() and owl_defend(), with usage similar to attack() and find_
defense (), make use of the owl pattern databases to generate the move tree and decide
the status of the group.

Chapter 15: Life and Death Reading 142

The function compute_eyes_pessimistic() used by the owl code is very conservative
and only feels certain about eyes if the eyespace is completely closed (i.e. no marginal
vertices).

The maximum number of moves tried at each node is limited by the parameter MAX_
MOVES defined at the beginning of ‘engine/owl.c’. The most most valuable moves are tried
first, with the following restrictions:

e If stackp > owl_branch_depth then only one move is tried per variation.

o If stackp > owl_reading_depth then the reading terminates, and the situation is de-
clared a win for the defender (since deep reading may be a sign of escape).

e If the node count exceeds owl_node_limit, the reading also terminates with a win for
the defender.

e Any pattern with value 99 is considered a forced move: no other move is tried, and
if two such moves are found, the function returns false. This is only relevant for the
attacker.

e Any pattern in ‘patterns/owl_attackpats.db’ and ‘patterns/owl_defendpats.db’
with value 100 is considered a win: if such a pattern is found by owl_attack or owl_
defend, the function returns true. This feature must be used most carefully.

The functions owl_attack() and owl_defend() may, like attack() and find_
defense (), return an attacking or defending move through their pointer arguments. If
the position is already won, owl_attack() may or may not return an attacking move.
If it finds no move of interest, it will return PASS, that is, (-1,-1). The same goes for
owl_defend ().

When owl_attack() or owl_defend() is called, the dragon under attack is marked in
the array goal. The stones of the dragon originally on the board are marked with goal=1;
those added by owl_defend() are marked with goal=2. If all the original strings of the
original dragon are captured, owl_attack() considers the dragon to be defeated, even if
some stones added later can make a live group.

Only dragons with small escape route are studied when the functions are called from
make_dragons ().

The owl code can be conveniently tested using the ‘--decidedragon location’ This

should be used with ‘-t’ to produce a useful trace, ‘-0’ to produce an SGF file of vari-
ations produced when the life and death of the dragon at location is checked, or both.
‘-—decideposition’ performs the same analysis for all dragons with small escape route.

15.2 Functions in ‘owl.c’

In this section we list the non-static functions in ‘owl.c’. Note that calls to owl_attack
and owl_defend should be made only when stackp==0. If you want to set up a position,
then use the owl code to analyze it, you may call do_owl_attack and do_owl_defend with
stackp>0 but first you must set up the goal and boundary arrays. See owl_does_defend
and owl_substantial for examples.

The reason that we do not try to write a general owl_attack which works when stackp>0
is that we make use of cached information in the calls to same_dragon from the (static)
function owl_mark_dragon. This requires the dragon data to be current, which it is not
when stackp>0.

Chapter 15: Life and Death Reading 143

e int owl_attack(int m, int n, int *ui, int *uj)

Returns 1 if a move can be found to attack the dragon at (m, n), in which
case (*ui, *uj) is the recommended move. (*ui, *uj) can be null point-
ers if the result is not needed.

— Returns 2 if the attack prevails provided attacker is willing to ignore
any ko threat (the attacker makes the first ko capture).

— Returns 3 if attack succeeds provided attacker has a ko threat which
must be answered (the defender makes the first ko capture).

e int owl_threaten_attack(int m, int n, int *ui, int *uj, int *vi, int *vj)
Returns 1 if the dragon at (m, n) can be captured given two moves in a
row. The first two moves to capture the dragon are given as (*ui, *uj)
and (kvi, *vj).

e int owl_defend(int m, int n, int *ui, int *uj)

Returns 1 if a move can be found to defend the dragon at (m, n), in
which case (*xui, *uj) is the recommended move. (*ui, *uj) can be null
pointers if the result is not needed.

— Returns 2 if the defense prevails provided defender is willing to ignore
any ko threat (the defender makes the first ko capture).

— Returns 3 if defense succeeds provided defender has a ko threat which
must be answered (the attacker makes the first ko capture).

e int owl_threaten_defense(int m, int n, int *ui, int *uj, int *vi, int *vj)
Returns true if the dragon at (m, n) can be defended given two moves in
a row. The first two moves to defend the dragon are given as (*ui, *uj)
and (*vi, *vj).
e void goaldump(char goal [MAX_BOARD] [MAX_BOARD]) quotation Lists the goal array.
For use in GDB:
(gdb) set goaldump(goal)
e void owl_reasons(int color)
Add owl reasons. This function should be called once during genmove.
e owl_does_defend(int ti, int tj, int m, int n)

Use the owl code to determine whether the move at (ti, tj) makes the
dragon at (m, n) owl safe. This is used to test whether tactical defenses
are strategically viable, whether a strategical defense move is effective, and
whether a vital eye point does save an owl critical dragon.

e owl_does_attack(int ti, int tj, int m, int n)

Use the owl code to determine whether the move at (ti, tj) owl kills the
dragon at (m, n). This is used to test whether strategical attack moves
are dangerous enough to kill and whether a vital eye point does kill an owl
critical dragon.

e int owl_connection_defends(int ti, int tj, int ai, int aj, int bi, int bj)

Use the owl code to determine whether connecting the two dragons (ai,
aj) and (bi, bj) by playing at (ti, tj) results in a living dragon. Should
be called only when stackp==0.

Chapter 15: Life and Death Reading 144

e int owl_lively(int i, int j)
True unless (i, j) is EMPTY or occupied by a lunch for the goal dragon.
Used during make_domains() (see optics.c: lively macro).

e int owl_substantial(int i, int j)
This function, called when stackp==0, returns true if capturing the string
at (i,j) results in a live group.

e int vital_chain(int m, int n)
This function returns true if it is judged that the capture of the string at
(m,n) is sufficient to create one eye or to escape.

Chapter 16: Influence Function 145

16 Influence Function

16.1 Conceptual Outline of Influence

We define lively stones to be all stones that can’t be tactically attacked or have a tactical
defense. Stones that have been found to be strategically dead are called dead while all other
stones are called alive. If we want to use the influence function before deciding the strategical
status, all lively stones count as alive.

Every alive stone on the board works as an influence source, with influence of its color
radiating outwards in all directions. The strength of the influence declines exponentially
with the distance from the source.

Influence can only flow unhindered if the board is empty, however. All lively stones
(regardless of color) act as influence barriers, as do connections between enemy stones that
can’t be broken through. For example the one space jump counts as a barrier unless either of
the stones can be captured. Notice that it doesn’t matter much if the connection between
the two stones can be broken, since in that case there would come influence from both
directions anyway.

We define territory to be the intersections where one color has no influence at all and the
other player does have. We can introduce moyo and area concepts similar to those provided
by the Bouzy algorithms in terms of the influence values for the two colors. “Territory”
refers to certain or probable territory while “Moyo” refers to an area of dominant influence
which is not necessarily guaranteed territory. “Area” refers to the breathing space around
a group in which it can manoever if it is attacked.

In order to avoid finding bogus territory, we add extra influence sources at places where
an invasion can be launched, e.g. at 3-3 under a handicap stone, in the middle of wide
edge extensions and in the center of large open spaces anywhere. Similarly we add extra
influence sources where intrusions can be made into what otherwise looks as solid territory,
e.g. monkey jumps.

Walls typically radiate an influence that is stronger than the sum of the influence from
the stones building the wall. To accommodate for this phenomenon, we also add extra
influence sources in empty space at certain distances away from walls.

16.2 The Core of the Influence Function

The basic influence radiation process can efficiently be implemented as a breadth first
search for adjacent and more distant points, using a queue structure.

Influence barriers can be found by pattern matching, assisted by reading through con-
straints and/or helpers. Wall structures, invasion points and intrusion points can be found
by pattern matching as well.

When influence is computed, the basic idea is that there are a number of influence sources
on the board, whose contributions are summed to produce the influence values. For the
time being we can assume that the living stones on the board are the influence sources,
although this is not the whole story.

Chapter 16: Influence Function 146

The function compute_influence() contains a loop over the board, and for each influ-
ence source on the board, the function accumulate_influence() is called. This is the core
of the influence function. Before we get into the details, this is how the influence field from
a single isolated influence source of strength 100 turns out:

0 0 00000 0 0 0O
0o 00 01 1 1 0 0 0O
0 0 01 23 2 1 0 00
0 01 3 511 5 3 1 0 O
0 1 2 5163316 5 2 1 0
0 1 31133 X3311 3 1 O
0 1 2 5163316 5 2 1 0
0 01 3 511 56 3 1 0 O
0 0 01 23 21 000
0o 0001 1 1 0 00O
0 0 00000 0 0 0O

These values are in reality floating point numbers but have been rounded down to the
nearest integer for presentation. This means that the influence field does not stop when the
numbers become zeroes.

Internally accumulate_influence () starts at the influence source and spreads influence
outwards by means of a breadth first propagation, implemented in the form of a queue. The
order of propagation and the condition that influence only is spread outwards guarantee
that no intersection is visited more than once and that the process terminates. In the
example above, the intersections are visited in the following order:

+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+
78 68 66 64 63 65 67 69 79
62 46 38 36 35 37 39 47 75
60 34 22 16 15 17 23 43 73
58 32 14 6 3 7 19 41 71
56 30 12 2 0 4 18 40 70
57 31 13 5 1 8 20 42 72
59 33 21 10 9 11 24 44 74
61 45 28 26 25 27 29 48 76
77 54 52 50 49 51 53 55 80
+ o+ o+ o+ o+ o+ o+ o+ o+

+ o+ o+ o+ o+ o+ o+

+ + + + + + + + + +

+

The visitation of intersections continues in the same way on the intersections marked "+’
and further outwards. In a real position there will be stones and tight connections stopping
the influence from spreading to certain intersections. This will disrupt the diagram above,
but the main property of the propagation still remains, i.e. no intersection is visited more
than once and after being visited no more influence will be propagated to the intersection.

16.3 The Core of the Influence Function

Let (m, n) be the coordinates of the influence source and (i, j) the coordinates of
a an intersection being visited during propagation, using the same notation as in the
accumulate_influence() function. Influence is now propagated to its eight closest neigh-
bors, including the diagonal ones, according to the follow scheme:

For each of the eight directions (di, dj), do:

Chapter 16: Influence Function 147

1. Compute the scalar product di*(i-m) + dj*(j-n) between the vectors (di,dj) and
(i,3) - (m,n)

2. If this is negative or zero, the direction is not outwards and we continue with the next
direction. The exception is when we are visiting the influence source, i.e. the first
intersection, when we spread influence in all directions anyway.

3. If (i+di, j+dj) is outside the board or occupied we also continue with the next direc-
tion.

4. Let S be the strength of the influence at (i, j). The influence propagated to (i+di,
j+dj) from this intersection is given by P*(1/A)*D*S, where the three different kinds
of damping are:

e The permeability ‘P’, which is a property of the board intersections. Normally this
is one, i.e. unrestricted propagation, but to stop propagation through e.g. one
step jumps, the permeability is set to zero at such intersections through pattern
matching. This is further discussed below.

e The attenuation ‘A’, which is a property of the influence source and different in
different directions. By default this has the value 3 except diagonally where the
number is twice as much. By modifying the attenuation value it is possible to
obtain influence sources with a larger or a smaller effective range.

e The directional damping ‘D’, which is the squared cosine of the angle between
(di,dj) and (i,j) - (m,n). The idea is to stop influence from "bending" around
an interfering stone and get a continuous behavior at the right angle cutoff. The
choice of the squared cosine for this purpose is rather arbitrary, but has the ad-
vantage that it can be expressed as a rational function of ‘m’, ‘n’, ‘i’, ‘j’, ‘di’, and
‘dj’, without involving any trigonometric or square root computations. When we

are visiting the influence source we let by convention this factor be one.

Influence is typically contributed from up to three neighbors "between" this intersection
and the influence source. These values are simply added together. As pointed out before,
all contributions will automatically have been made before the intersection itself is visited.

When the total influence for the whole board is computed by compute_influence(),
accumulate_influence() is called once for each influence source. These invocations are
totally independent and the influence contributions from the different sources are added
together.

16.4 Permeability

The permeability at the different points is initially one at all empty intersections and
zero at occupied intersections. To get a useful influence function we need to modify this,
however. Consider the following position:

[...a.X (’a’ empty intersection)

Chapter 16: Influence Function 148

The corner is of course secure territory for ‘0’ and clearly the ‘X’ stone has negligible
effect inside this position. To stop ‘X’ influence from leaking into the corner we use pattern
matching (pattern Barrierl /Barrier2 in ‘barriers.db’) to modify the permeability for ‘X’
at this intersection to zero. ‘0’ can still spread influence through this connection.

Another case that needs to be mentioned is how the permeability damping is computed
for diagonal influence radiation. For horizontal and vertical radiation we just use the per-
meability (for the relevant color) at the intersection we are radiating from. In the diagonal
case we additionally multiply with the maximum permeability at the two intersections we
are trying to squeeze between. The reason for this can be found in the diagram below:

[...X [...X
|00.. |0da.
|..0. | .bc.
|..0. |..0.
== +———-

We don’t want ‘X’ influence to be spread from ‘a’ to ‘b’, and since the permeability at
both ¢ and d is zero, the rule above stops this.

16.5 Escape

One application of the influence code is in computing the dragon.escape_route field.
This is computed by the function compute_escape() as follows. First, every intersection
is assigned an escape value, ranging between 0 and 4, depending on the influence value of
the opposite color.

In addition to assiging an escape value to empty vertices, we also assign an escape value
to friendly dragons. This value can range from 0 to 6 depending on the status of the dragon,
with live dragons having value 6.

Then we sum the values of the resulting influence escape values over the intersections
(including friendly dragons) at distance 4, that is, over those intersections which can be
joined to the dragon by a path of length 4 (and no shorter path) not passing adjacent to
any unfriendly dragon. In the following example, we sum the influence escape value over
the four vertices labelled 4’

. X . 0 . X.2.4.0

X .. X..11234.

X0.0 0 X01012340

X0.0 .o X0101 . 4

X0...X .00 X01. X 0
. X . .o 1 . X

X X .o X X

Since the dragon is trying to reach safety, the reader might wonder why compute_
influence() is called with the opposite color of the dragon contemplating escape. To

Chapter 16: Influence Function 149

explain this point, we first remind the reader why there is a color parameter to compute_
influence (). Consider the following example position:

XX
000. .000
0...... 0
0...... 0

Whether the bottom will become O territory depends on who is in turn to play. This is
implemented with the help of patterns in barriers.db, so that X influence is allowed to leak
into the bottom if X is in turn to move but not if O is. There are also “invade” patterns which
add influence sources in sufficiently open parts of the board which are handled differently
depending on who is in turn to move.

In order to decide the territorial value of an O move in the third line gap above, influence
is first computed in the original position with the opponent (i.e. X) in turn to move. Then
the O stone is played to give:

L XX
000.0000
0...... 0
0...... 0

Now influence is computed once more, also this time with X in turn to move. The
difference in territory (as computed from the influence values) gives the territorial value of
the move.

Exactly how influence is computed for use in the escape route estimation is all ad hoc.
But it makes sense to assume the opponent color in turn to move so that the escape possi-
bilities aren’t overestimated. After we have made a move in the escape direction it is after
all the opponent’s turn.

The current escape route mechanism seems good enough to be useful but is not com-
pletely reliable. Mostly it seems to err on the side of being too optimistic.

16.6 Influential Functions

e static void accumulate_influence(struct influence_data *q, int m, int n,
int color)

Limited in scope to ‘influence. c’, this is the core of the influence function.
Given the coordinates and color of an influence source, it radiates the
influence outwards until it hits a barrier or the strength of the influence
falls under a certain threshold. The radiation is performed by a breadth
first propagation, implemented by means of an internal queue.

Chapter 16: Influence Function 150

e void compute_initial_influence(int color, int dragons_known)

Compute the influence before a move has been made, which can later be
compared to the influence after a move. Assume that the other color is in
turn to move.

e static void compute_move_influence(int m, int n, int color)

Let color play at (m, n) and compute the influence after this move, assum-
ing that the other color is in turn to move next.

e int influence_territory_color(int m, int n)

Return the color who has territory at (m, n), or EMPTY.
e int influence_moyo_color(int m, int n)

Return the color who has moyo at (m, n), or EMPTY.
e int influence_area_color(int m, int n)

Return the color who has area at (m, n), or EMPTY.
e int influence_delta_territory(int m, int n, int color)

Compute the difference in territory made by a move by color at (m, n).
e int influence_delta_moyo(int m, int n, int color)

Compute the difference in moyo made by a move by color at (m, n).
e int influence_delta_strict_moyo(int m, int n, int color)

Compute the difference in strict moyo made by a move by color at (m, n).
e int influence_delta_area(int m, int n, int color)

Compute the difference in area made by a move by color at (m, n).
e int influence_delta_strict_area(int m, int n, int color)

Compute the difference in strict area made by a move by color at (m, n).
e void debug_influence_move(int i, int j)

Print the influence map when we have computed influence for the move at

(i, J)-
16.7 Colored display and debugging of influence

It is possible to obtain colored diagrams showing influence from a colored xterm or rxvt
window.

e ‘-m 0x08’ or ‘-m 8’

Show diagrams for the initial influence computation. This is done twice, the
first time before make_dragons() is run and the second time after. The
difference is that dead dragons are taken into account the second time.
Tactically captured worms are taken into account both times.

e ‘-m 0x010’ or ‘-m 16’.
Show colored display of territory /moyo/area regions.
— territory: cyan
— moyo: yellow

— area: red

Use either with ‘-m 0x8’ (i.e. use ‘-m 0x18’) or with ‘--debuginfluence’.

Chapter 16: Influence Function 151

e ‘-m 0x20’ or ‘-m 32’.
Show numerical influence values for white and black. These come in two
separate diagrams, the first one for white, the second one for black. Notice
that the influence values are represented by floats and thus have been
rounded in these diagrams. Use either with ‘-m 0x8’ (i.e. use ‘-m 0x28’) or
with ‘--debuginfluence’.

e ‘--debuginfluence location’

Show influence diagrams after the move at the given location. An impor-
tant limitation of this option is that it’s only effective for moves that the
move generation is considering.

e ‘-d 0x20’

Turn on DEBUG_INFLUENCE. This gives tons of messages from the pattern
matching performed by the influence code. Too many to be really useful,
unfortunately.

Notice that you need to activate at least one of ‘-m 0x8’ or ‘--debuginfluence’, and at
least one of ‘-m 0x10’ and ‘-m 0x20’, to get any diagrams at all. The first two determine
when to print diagrams while the last two determine what diagrams to print.

Chapter 17: Moyo 152

17 Moyo

The file ‘score.c’ contains algorithms for the computation of a number of useful things.
Most can be displayed visually using the ‘-m’ option (see Section 5.8 [Colored Display],
page 33).

In GNU Go 2.6 extensive use was made of an algorithm from Bruno Bouzy’s dissertation,
which is available at: ftp://www.joy.ne.jp/welcome/igs/Go/computer/bbthese.ps.Z
This algorithm starts with the characteristic function of the live groups on the board and
performs ‘n’ operations called dilations, then ‘m’ operations called erosions. If n=5 and
m=21 this is called the 5/21 algorithm.

The Bouzy 5/21 algorithm is interesting in that it corresponds reasonably well to the
human concept of territory. This algorithm is still used in GNU Go 3.0 in the function
estimate_score. Thus we associate the 5/21 algorithm with the word territory. Similarly
we use words moyo and area in reference to the 5/10 and 4/0 algorithms, respectively.

The principle defect of the algorithm is that it is not tunable. The current method of
estimating moyos and territory is in ‘influence.c’ (see Chapter 16 [Influence|, page 145).
The territory, moyo and area concepts have been reimplemented using the influence code.

The Bouzy algorithm is briefly reimplemented in the file ‘scoring.c’ and is used by
GNU Go 3.0 in estimating the score.

Not all features of the old ‘moyo.c’ from GNU Go 2.6 were reimplemented—particularly
the deltas were not—but the reimplementation may be more readable.

17.1 Bouzy’s 5/21 algorithm

Bouzy’s algorithm was inspired by prior work of Zobrist and ideas from computer vision
for determining territory. This algorithm is based on two simple operations, DILATION
and EROSION. Applying dilation 5 times and erosion 21 times determines the territory.

To get a feeling for the algorithm, take a position in the early middle game and try
the colored display using the ‘-m 1’ option in an RXVT window. The regions considered
territory by this algorithm tend to coincide with the judgement of a strong human player.

Before running the algorithm, dead stones (dragon.status==0) must be "removed."

Referring to page 86 of Bouzy’s thesis, we start with a function taking a high value (ex
: +128 for black, -128 for white) on stones on the goban, 0 to empty intersections. We may
iterate the following operations:

dilation: for each intersection of the goban, if the intersection is >= 0, and not adjacent
to a <0 one, then add to the intersection the number of adjacent >0 intersections. The same
for other color : if the intersection is <=0, and not adjacent to a >0 one, then sub to it the
number of <0 intersections.

erosion: for each intersection >0 (or <0), subtract (or add) the number of adjacent <=0
(or >=0) intersection. Stop at zero. The algorithm is just : 5 dilations, then 21 erosions.
The number of erosions should be 1+n(n-1) where n=number of dilation, since this permit
to have an isolated stone to give no territory. Thus the couple 4/13 also works, but it is
often not good, for example when there is territory on the 6th line.

For example, let us start with a tobi.

Chapter 17: Moyo 153

128 0 128

1 dilation :

1 128 2 128 1

1 1
2 dilations :
1 1
2 2 3 2 2

2 2 3 2 2
1 1
3 dilations :
1 1
2 2 3 2 2
2 4 6 6 6 4 2

2 4 6 6 6 4 2
2 2 3 2 2
1 1
and so on...

Next, with the same example

3 dilations and 1 erosion :

Chapter 17: Moyo 154

6 136 8 136 6

3 dil. / 3 erosions :

5 136 8 136 5

5 6 5
3/4:
3 5 3
2 136 8 136 2
3 5 3
3/5 :
1 4 1

136 8 136

Chapter 17: Moyo 155

3/6 :
3
135 8 135
3
3/7:

132 8 132

We interpret this as a 1 point territory.

Chapter 18: Utility Functions 156

18 Utility Functions

In this Chapter, we document some of the utilities which may be called from the GNU
Go engine. If there are differences between this documentation and the source files, the
source files are the ultimate reference. You may find it convenient to use Emacs’ built in
facility for navigating the source to find functions and their in-source documentation (see
Section 4.7 [Navigating the Source], page 29).

18.1 General Utilities

Utility functions from ‘engine/utils.c’. Many of these functions underlie autohelper
functions (see Section 12.7 [Autohelper Functions], page 98).
e void change_dragon_status(int x, int y, int status)
Change the status of the dragon at (x,y).
e void count_territory(int *white, int *black)
Measure territory.
e void evaluate_territory(int *white, int *black)

Evaluate territory for both sides. Removes dead dragons before counting.
The position cannot be reused after this operation.

e void change_defense(int ai, int aj, int ti, int tj, int dcode)

Moves the point of defense of (ai, aj) to (ti, tj), and sets
worm[a] .defend_code to dcode.

e void change_attack(int ai, int aj, int ti, int tj, int acode)

Moves the point of attack of the worm at (ai, aj) to (ti, tj), and sets
worm[a] .attack_code to acode.

e int defend_against(int ti, int tj, int color, int ai, int aj)

Returns true if a move at (ti,tj) prevents the enemy from playing at
(ai,aj). It is checked whether after the moves ‘t’, ‘a’, the string at ‘a’
can be captured.

e int cut_possible(int i, int j, int color)

Returns true if color can cut at (i,j). This information is collected by
find_cuts(), using the B patterns in the connections database.

e int does_attack(int ti, int tj, int ai, int aj)

Returns true if the move at (ti, tj) attacks (ai, aj). This means that
it captures the string, and that (ai, aj) is not already dead.

e int does_defend(int ti, int tj, int ai, int aj)

Returns true if the move at (ti, tj) defends (ai, aj). This means that
it defends the string, and that (ai, aj) can be captured if no defense is
made.

e int somewhere(int color, int last_move, ...)
Example:
somehere (WHITE, 2, ai, aj, bi, bj, ci, cj).

returns true if one of the vertices listed satisfies p[i] [j]==color. Here
last_move is the number of moves minus one.

Chapter 18: Utility Functions 157

e int play_break_through_n(int color, int num_moves, ...)

This function plays a sequence of moves, alternating between the play-
ers and starting with color. After having played through the sequence,
the three last coordinate pairs gives a position to be analyzed by break_
through (), to see whether either color has managed to enclose some stones
and/or connected his own stones. If any of the three last positions is empty,
it’s assumed that the enclosure has failed, as well as the attempt to connect.
If one or more of the moves to play turns out to be illegal for some reason,
the rest of the sequence is played anyway, and break_through () is called as
if nothing special happened. Like break_through(), this function returns
1 if the attempt to break through was succesful and 2 if it only managed to
cut through. The function break_through is documented elsewhere (see
Section 14.6 [Reading Functions], page 136).

e int play_break_through_n(int color, int num_moves, ...)

plays a sequence of moves, alternating between the players and starting
with color. After having played through the sequence, the three last co-
ordinate pairs gives a position to be analyzed by break_through(), to see
whether either color has managed to enclose some stones and/or connected
his own stones. If any of the three last positions is empty, it’s assumed that
the enclosure has failed, as well as the attempt to connect. If one or more
of the moves to play turns out to be illegal for some reason, the rest of the
sequence is played anyway, and break_through() is called as if nothing spe-
cial happened. Like break_through(), this function returns 1 if the attempt
to break through was succesful and 2 if it only managed to cut through.

e int play_attack_defend_n(int color, int do_attack, int num_moves, ...)

Plays a sequence of moves, alternating between the players and starting
with color. After having played through the sequence, the last coordinate
pair gives a target to attack or defend, depending on the value of do_attack.
If there is no stone present to attack or defend, it is assumed that it has
already been captured. If one or more of the moves to play turns out to
be illegal for some reason, the rest of the sequence is played anyway, and
attack/defense is tested as if nothing special happened. A typical use for
these functions is to set up a ladder in an autohelper and see whether it
works or not.

e int play_attack_defend2_n(int color, int do_attack, int num_moves, ...)

The function play_attack_defend2 n() plays a sequence of moves, alter-
nating between the players and starting with color. After having played
through the sequence, the two last coordinate pairs give two targets to
simultaneously attack or defend, depending on the value of do_attack. If
there is no stone present to attack or defend, it is assumed that it has
already been captured. If one or more of the moves to play turns out to
be illegal for some reason, the rest of the sequence is played anyway, and
attack/defense is tested as if nothing special happened. A typical use for
these functions is to set up a crosscut in an autohelper and see whether at
least one cutting stone can be captured.

e int find lunch(int m, int n, int *wi, int *wj, int *ai, int *aj)

Chapter 18: Utility Functions 158

Looks for a worm adjoining the string at (m,n) which can be easily cap-
tured. Whether or not it can be defended doesn’t matter (see Chapter 10
[Worms and Dragons|, page 67). Returns the location of the string in (*wi,
*wj), and the location of the attacking move in (*ai, *aj).

e void modify_depth_values(int n)

The parameters depth, backfill_depth, fourlib_depth and ko_depth
are incremented by ‘n’. This is typically used to avoid horizon effects. By
temporarily increasing the depth values when trying some move, one can
avoid that an irrelevant move seems effective just because the reading hits
a depth limit earlier than it did when reading only on relevant moves.

e void increase_depth_values(void)
Same as modify_depth_values(1).

e void decrease_depth_values(void)
Same as modify_depth_values(-1).

e void set_temporary_depth_values(int d, int b, int f, int k)

e void restore_depth_values()
These functions allow more drastic temporary modifications of the depth
values. Typical use is to turn certain depth values way down for read-
ing where speed is more important than accuracy, e.g. for the influence
function. Temporarily set or restore the values of depth, backfill_depth,
fourlib_depth

ko_depth.

e int same_dragon(int ai, int aj, int bi, int bj)
Test whether two dragons are the same. Used by autohelpers.

e int same_worm(int ai, int aj, int bi, int bj)
Test whether two worms are the same. Used by autohelpers.

e int is_worm_origin(int wi, int wj, int i, int j)
Determine whether two worms have the same origin.

e int accurate_approxlib(int m, int n, int color, int maxlib, int *1libi, int

*1ibj)

Play a stone at (m, n) and count the number of liberties for the result-
ing string. This requires (m, n) to be empty. This function differs from
approxlib() by the fact that it removes captured stones before count-
ing the liberties. If 1ibi != NULL the found liberties are written into the
1ibi[], 1ibj[] arrays, but no more than maxlib of them. Liberties ex-
ceeding max1ib may or may not be reported in the return value. If you want
to know the exact number of liberties, regardless how large, you should set
maxlib to MAXLIBS.

e int confirm_safety(int i, int j, int color, int value, int *di, int *dj)

This function will detect some blunders. Returns 1 if a move by color
at (i,j) does not diminish the safety of any worm, nor tend to rescue
inadvertantly an opponent stone.

e int double_atari(int m, int n, int color)

Returns true if a move by (color) fits the following shape:

Chapter 18: Utility Functions

Xx. (O=color)
(0):¢

capturing one of the two X strings. The name is a slight misnomer since
this includes attacks which are not necessarily double ataris, though the
common double atari is the most important special case.

e int unconditional_life(int wormi[MAX_STRINGS], int wormj [MAX_STRINGS],
int color)

Find those worms of the given color that can never be captured, even if
the opponent is allowed an arbitrary number of consecutive moves. The
coordinates of the origins of these worms are written to the wormi, wormj
arrays and the number of non-capturable worms is returned. The algo-
rithm is to cycle through the worms until none remains or no more can be
captured. A worm is removed when it is found to be capturable, by letting
the opponent try to play on all its liberties. If the attack fails, the moves
are undone.
e int vital_chain(int m, int n)

This function returns true if it is judged that the capture of the string at
(m,n) is sufficient to create one eye. The current just checks that (m,n)
is not a singleton on the first line. For use when called from fill_liberty,
this function may optionally return a point (*di, *dj) of defense, which,
if taken, will presumably make the move at (i, j) safe on a subsequent
turn.

e double gg_gettimeofday(void)
Get the time of day, calling gettimeofday from ‘sys/time.h’ if available,
otherwise substituting a workaround for portability.

e void sniff_lunch(int i, int j, int *max, int *min)
Computes the number of eyes yielded by capturing a lunch. The surround-
ing liberties are filled and the stones are removed from the board. Then
compute_eyes is called to evaluate the resulting eyespace. The maximum

and minimum number of resulting eyes is returned in the variables *max
and *min.
e int unconditional_life(int wormi[MAX_STRINGS], int wormj [MAX_STRINGS],
int color)

Find those worms of the given color that can never be captured, even if
the opponent is allowed an arbitrary number of consecutive moves. The
coordinates of the origins of these worms are written to the wormi, wormj
arrays and the number of non-capturable worms is returned.

18.2 Print utilities

Utility functions from ‘engine/printutils.c’.
e static void vgprintf (FILE* outputfile, const char *fmt, va_list ap)

This function underpins all the TRACE and DEBUG stuff. It is static to
‘printutils.c’ but documented here for completeness. Accepts %c, %4,

159

Chapter 18: Utility Functions 160

%E, %hs, and %x as usual. But it also accepts %m, which takes TWO integers
and writes a move. Other nonstandard format strings are %H for writing
a hash value and %C to convert a color value into a string. %o at start
means outdent (ie cancel indent). The scope of this function is limited to
‘engine/utils.c’ but the format codes %m and %c$ work for all its relatives
such as TRACE.

e void gprintf (const char *fmt, ...)
Required wrapper to vgprintf. Writes to stderr.
e void mprintf(const char *fmt, ...)

Identical to gprintf except that it prints to stdout. Useful when %m is
needed for non-error messages, e.g. in the ascii interface.

e void TRACE(const char *fmt, ...)

Basic tracing function. Like gprintf but prints only if verbose>0. Set
the verbose level with the ‘-t option (see Section 3.9 [Invoking GNU Go],
page 12). Variants RTRACE, etc. are documented in the source.

e void DEBUG(int flag, const char *fmt, ...)

Like TRACE but conditioned on a debug flag being set, usually at the com-
mand line with ‘-d’ option (see Section 3.9 [Invoking GNU Gol, page 12).

e void abortgo(const char *file, int line, const char *msg, int x, int y)

A wrapper around abort () which shows the state variables at the time of
the problem. (i, j) are typically a related move, or -1, -1.

e ASSERT

This is the usual way of calling abortgo. This macro (defined in
‘liberty.h’) terminates the program if condition fails.

e const char *color_to_string(int color)
Convert a color value to a string.

e const char * location_to_string(int i, int j)
Converts a board location to a string

e const char * status_to_string(int i, int j)

Converts a status to a string.

Chapter 19: Incremental Algorithms in Reading 161

19 Incremental Algorithms in Reading

The algorithms in board. ¢ implement a method of incremental board updates that keeps
track of the following information for each string:

e The color of the string.
e Number of stones in the string.

e Origin of the string, i.e. a canonical reference point, defined to be the stone with
smallest ‘1’ coordinate and if there is a tie with smallest ‘j’ coordinate.

e A list of the stones in the string.

e Number of liberties.

e A list of the liberties. If there are too many liberties the list is truncated.
e The number of neighbor strings.

A list of the neighbor strings.

The basic data structure is
struct string_data {

int color; /* Color of string, BLACK or WHITE */
int size; /* Number of stones in string. */

int origini; /* Coordinates of "origin", i.e. */
int originj; /* "upper left" stone. */

int liberties; /* Number of liberties. */

int 1ibi[MAX_LIBERTIES]; /* Coordinates of liberties. */

int 1ibj [MAX_LIBERTIES];

int neighbors; /* Number of neighbor strings */

int neighborlist [MAXCHAIN]; /* List of neighbor string numbers. */
int mark; /* General purpose mark. */

};

struct string data string[MAX_STRINGS];

It should be clear that almost all information is stored in the string array. To get a
mapping from the board coordinates to the string array we have

int string_number [MAX_BOARD] [MAX_BOARD] ;

which contains indices into the string array. This information is only valid at nonempty
vertices, however, so it is necessary to first verify that p[i] [j] !'= EMPTY.

The string_data structure does not include an array of the stone coordinates. This
information is stored in a separate array (or rather two):

int next_stonei[MAX_BOARD] [MAX_BOARD] ;
int next_stonej [MAX_BOARD] [MAX_BOARD] ;

These arrays implement cyclic linked lists of stones. Each vertex contains a pointer to
another (possibly the same) vertex. Starting at an arbitrary stone on the board, following
these pointers should traverse the entire string in an arbitrary order before coming back to
the starting point. As for the ’string_number’ array, this information is invalid at empty
points on the board. This data structure has the good properties of requiring fixed space
(regardless of the number of strings) and making it easy to add a new stone or join two
strings.

Additionally the code makes use of some work variables:

Chapter 19: Incremental Algorithms in Reading 162

static int ml[MAX_BOARD] [MAX_BOARD];
static int liberty_mark;
static int string_mark;
static int next_string;
static int strings_initialized = O;

The ml array and liberty_mark are used to "mark" liberties on the board, e.g. to avoid
counting the same liberty twice. The convention is that if m1[i] [j] has the same value as
liberty_mark, then (i, j) is marked. To clear all marks it suffices to increase the value
of liberty_mark, since it is never allowed to decrease.

The same relation holds between the mark field of the string_data structure and
string_mark. Of course these are used for marking individual strings.

next_string gives the number of the next available entry in the string array. Then
strings_initialized is set to one when all data structures are known to be up to date.
Given an arbitrary board position in the ‘p’ array, this is done by calling incremental _
board_init (). It is not necessary to call this function explicitly since any other function
that needs the information does this if it has not been done.

The interesting part of the code is the incremental update of the data structures when a
stone is played and subsequently removed. To understand the strategies involved in adding
a stone it is necessary to first know how undoing a move works. The idea is that as soon
as some piece of information is about to be changed, the old value is pushed onto a stack
which stores the value and its address. The stack is built from the following structures:

struct change_stack_entry {
int *address;
int value;

};

struct change_stack_entry change_stack[STACK_SIZE];
int change_stack_index;
and manipulated with the macros
BEGIN_CHANGE_RECORD ()
PUSH_VALUE (v)
POP_MOVE()

Calling BEGIN_CHANGE_RECORD () stores a null pointer in the address field to indicate the
start of changes for a new move. As mentioned earlier PUSH_VALUE() stores a value and
its corresponding address. Assuming that all changed information has been duly pushed
onto the stack, undoing the move is only a matter of calling POP_MOVE(), which simply
assigns the values to the addresses in the reverse order until the null pointer is reached.
This description is slightly simplified because this stack can only store 'int’ values and we
need to also store changes to the board. Thus we have two parallel stacks where one stores
int values and the other one stores Intersection values.

When a new stone is played on the board, first captured opponent strings, if any, are
removed. In this step we have to push the board values and the next_stone pointers for the
removed stones, and update the liberties and neighbor lists for the neighbors of the removed
strings. We do not have to push all information in the ’string’ entries of the removed strings
however. As we do not reuse the entries they will remain intact until the move is pushed
and they are back in use.

Chapter 19: Incremental Algorithms in Reading 163

After this we put down the new stone and get three distinct cases:
1. The new stone is isolated, i.e. it has no friendly neighbor.
2. The new stone has exactly one friendly neighbor.

3. The new stone has at least two friendly neighbors.

The first case is easiest. Then we create a new string by using the number given by
next_string and increasing this variable. The string will have size one, next_stone points
directly back on itself, the liberties can be found by looking for empty points in the four
directions, possible neighbor strings are found in the same way, and those need also to
remove one liberty and add one neighbor.

In the second case we do not create a new string but extend the neighbor with the
new stone. This involves linking the new stone into the cyclic chain, if needed moving the
origin, and updating liberties and neighbors. Liberty and neighbor information also needs
updating for the neighbors of the new stone.

In the third case finally, we need to join already existing strings. In order not to have to
store excessive amounts of information, we create a new string for the new stone and let it
assimilate the neighbor strings. Thus all information about those can simply be left around
in the ’string’ array, exactly as for removed strings. Here it becomes a little more complex
to keep track of liberties and neighbors since those may have been shared by more than
one of the joined strings. Making good use of marks it all becomes rather straightforward
anyway.

The often used construction

FIRST_STONE(s, i, j);
do {

NEXT_STONE(i, j);
} while (!BACK_TO_FIRST_STONE(s, i, j));
traverses the stones of the string with number ‘s’ exactly once, with (i, j) holding the
coordinates. In general (i, j) are used as board coordinates and ‘s’ as an index into the
string array or sometimes a pointer to an entry in the string array.

Chapter 20: The Go Text Protocol 164

20 The Go Text Protocol

20.1 The GNU Go Text Protocol

GNU Go 3.0 introduces a new interface, the Go Text Protocol (GTP). The intention
is to make an interface that is better suited for machine-machine communication than the
ascii interface and simpler, more powerful, and more flexible than the Go Modem Protocol.

The GTP has two principal current applications: it is used in the test suite (see Chap-
ter 21 [Regression|, page 170) and it is used to communicate with gnugoclient, which is
not part of the GNU Go distribution, but has been used to run GNU Go on NNGS. Other
potential uses might be any of the current uses of the GMP, for which the GTP might serve
as a replacement. This would likely entail extension and standardization of the protocol.

A sample GTP session may look as follows:
hannah 2289% ./interface/gnugo --quiet --mode gtp

1 loadsgf regression/games/incident156.sgf 249
=1

2 countlib C3
=2 4

3 findlib C3
=3 C4 B3 D3 B2

5 attack C3
=5 0

owl_attack C3
=1 B4

3 owl_defend C3
=3 1 B5

owl_attack A2
? vertex must not be empty

quit

By specifying ‘--mode gtp’ GNU Go starts in the GTP interface. No prompt is used,
just start giving commands. The commands have the common syntax

[id] command_name [arguments]

The command is exactly one line long, i.e. it ends as soon as a newline appears. It’s
not possible to give multiple commands on the same line. Before the command name an
optional identity number can be specified. If present it must be an integer between 0 and
2731-1. The id numbers may come in any order or be reused. The rest of the line after the
command name is assumed to be arguments for the command. Empty lines are ignored, as
is everything following a hash sign up to the end of the line.

Chapter 20: The Go Text Protocol 165

If the command is successful, the response is of the form
=[id] result

Here ‘=’ indicates success and id is the identity number given in the command or the
empty string if the id was omitted. This is followed by the result, which is a text string
ending with two consecutive newlines.

If the command fails for some reason, the response takes the form
7[id] error_message

Here ‘?’ indicates failure, id is as before, and error_message gives an explanation for
the failure. This string also ends with two consecutive newlines.

The available commands may always be listed using the single command help. Currently
this gives the list below.

attack

black

boardsize

color
combination_attack
countlib
debug_influence
debug_move_influence
decrease_depths
defend

dragon_data
dragon_status
dump_stack

echo

eval_eye

final_score

findlib
fixed_handicap
genmove_black
genmove_white
get_life_node_counter
get_owl_node_counter
get_reading_node_counter
get_trymove_counter
gg_genmove

help

increase_depths
influence

is_legal

komi

level

loadsgf
move_influence

name

new_score

owl_attack

Chapter 20: The Go Text Protocol 166

owl_defend

popgo

prisoners

quit

report_uncertainty
reset_life_node_counter
reset_owl_node_counter
reset_reading_node_counter
reset_trymove_counter
same_dragon

showboard

trymove
tune_move_ordering
version

white

worm_cutstone
worm_data

For exact specification of their arguments and results we refer to the comments of the
functions in ‘interface/play_gtp.c’.

The protocol is asymmetric and involves two parties, which we may call ‘A’ and ‘B’. ‘A’ is
typically some kind of arbiter or relay and ‘B’ is a go engine. All communication is initiated
by ‘A’ in form of commands, to which ‘B’ responds.

Potential setups include:

1. Regression testing.
A (regression script) — B (engine).
A sets up a board position and asks B to e.g. generate a move or find an
attack on a specific string.

2. Human vs program.
A (GUI) - B (engine)
The GUI relays moves between the human and the engine and asks the

engine to generate moves. Optionally the GUI may also use GTP to ask
the engine which moves are legal or give a score when the game is finished.

3. Program vs program with arbiter.
B1 (engine 1) — A (arbiter) — B2 (engine 2)
A relays moves between the two engines and alternately asks the engines
to generate moves. This involves two different GTP channels, the first
between A and B1, and the second between A and B2. There is no direct

communication between B1 and B2. The arbiter dictates board size, komi,
rules, etc.

4. Program vs program without arbiter.

The same as above except that Bl includes the arbiter functionality and
the first GTP link is shortcut.

5. Connection between go server and program.

Go server — A (relay) — B (engine)

Chapter 20: The Go Text Protocol 167

A talks with a go server using whatever protocol is needed and listens for
match requests. When one arrives it accepts it, starts the go engine and
issues GTP commands to set up board size, komi, etc. and if a game is
restarted it also sets up the position. Then it relays moves between the
server and the engine and asks the engine to generate new moves when it
is in turn.

Setups 1 and 5 are in active and regular use with GNU Go. Programs implementing
setup 3 are also distributed with GNU Go (the files ‘interface/gtp_examples/twogtp’
and ‘interface/gtp_examples/2ptkgo.pl’).

The GTP is currently unfinished and unstandardized. It is hoped that it will grow
to fill the needs currently served by the GMP and perhaps other functions. As it is yet
unstandardized, this section gives some general remarks which we hope will constrain its
development. We also discuss how the GTP is implemented in GNU Go, for the benefit of
anyone wishing to add new commands. Notice that the current set of GTP commands is a
mix of generally useful ones and highly GNU Go specific ones. Only the former should be
part of a standardized protocol while the latter should be private extensions.

The purpose of the protocol is machine-machine communication. It may be tempting to
modify the protocol so that it becomes more comfortable for the human user, for example
with an automatic showboard after every move. This is absolutely not the purpose of the
protocol! Use the ascii interface instead if you’re inclined to make such a change.

Newlines are implemented differently on different operating systems. On Unix, a newline
is just a line feed LF (ascii \012). On DOS/Windows it is CRLF (\013\012). Thus whether
GNU Go sends a carriage return with the line feed depends on which platform it is compiled
for. The arbiter should silently discard carriage returns.

Applications using GTP should never have to guess about the basic structure of the
responses, defined above. The basic construction for coding a GTP command can be found
in gtp_countlib():

static int
gtp_countlib(char *s, int id)
{
int i, j;
if (!gtp_decode_coord(s, &i, &j))
return gtp_failure(id, "invalid coordinate");

if (plil[j] == EMPTY)
return gtp_failure(id, "vertex must not be empty");

return gtp_success(id, "%d", countlib(i, j));
}
The functions gtp_failure() and gtp_success() automatically ensures the specified
response format, assuming the strings they are printing do not end with a newline.
Sometimes the output is too complex for use with gtp_success, e.g. if we want to print
vertices, which gtp_success() doesn’t support. Then we have to fall back to the construction
in e.g. gtp_genmove_white():
static int
gtp_genmove_white(char *s, int id)

Chapter 20: The Go Text Protocol 168

{
int i, j;
UNUSED(s) ;
if (genmove(&i, &j, WHITE) >= 0)

play_move(i, j, WHITE);

gtp_printid(id, GTP_SUCCESS);
gtp_print_vertex(i, j);
return gtp_finish_response();

}

Here gtp_printid() writes the equal sign and the request id while gtp_finish_
response () adds the final two newlines. The next example is from gtp_influence():

gtp_printid(id, GTP_SUCCESS);
get_initial_influence(color, 1, white_influence,

black_influence, influence_regions);
print_influence(white_influence, black_influence, influence_regions);
/* We already have one newline, thus can’t use gtp_finish _response().
gtp_printf ("\n");
return GTP_OK;

As we have said, the response should be finished with two newlines. Here we have to
finish up the response ourselves since we already have one newline in place.

One problem that can be expected to be common is that an engine happens to finish
its response with three (or more) rather than two consecutive newlines. This is an error
by the engine that the controller can easily detect and ignore. Thus a well behaved engine
should not send stray newlines, but should they appear the controller should ignore them.
The opposite problem of an engine failing to properly finish its response with two newlines
will result in deadlock. Don’t do this mistake!

Although it doesn’t suffice in more complex cases, gtp_success() is by far the most
convenient construction when it does. For example, the function gtp_report_uncertainty
takes a single argument which is expected to be "on" or "off", after which it sets the value
of report_uncertainty, a variable which affects the form of future GTP responses, reports
success, and exits. The function is coded thus:

static int
gtp_report_uncertainty(char *s, int id)
{
if (!strncmp(s, "on", 2)) {
report_uncertainty = 1;
return gtp_success(id, "");
}
if (!strncmp(s, "off", 3)) {
report_uncertainty = 0;
return gtp_success(id, "");
}
return gtp_failure(id, "invalid argument");

by

*/|

Chapter 20: The Go Text Protocol 169

20.2 Regression testing with GTP

GNU Go uses GTP for regression testing. These tests are implemented as files with
GTP commands, which are fed to GNU Go simply by redirecting stdin to read from a
file. The output is filtered so that equal signs and responses from commands without id
numbers are removed. These results are then compared with expected results encoded in
GTP comments in the file, using matching with regular expressions. More information can
be found in the regression chapter (see Chapter 21 [Regression|, page 170).

Chapter 21: Regression testing 170

21 Regression testing

The standard purpose of regression testing is to avoid getting the same bug twice. When
a bug is found, the programmer fixes the bug and adds a test to the test suite. The test
should fail before the fix and pass after the fix. When a new version is about to be released,
all the tests in the regression test suite are run and if an old bug reappears, this will be
seen quickly since the appropriate test will fail.

The regression testing in GNU Go is slightly different. A typical test case involves
specifying a position and asking the engine what move it would make. This is compared to
one or more correct moves to decide whether the test case passes or fails. It is also stored
whether a test case is expected to pass or fail, and deviations in this status signify whether
a change has solved some problem and/or broken something else. Thus the regression
tests both include positions highlighting some mistake being done by the engine, which are
waiting to be fixed, and positions where the engine does the right thing, where we want to
detect if a change breaks something.

21.1 Regression testing in GNU Go

Regression testing is performed by the files in the ‘regression/’ directory. The tests
are specified as GTP commands in files with the suffix ‘.tst’, with corresponding correct
results and expected pass/fail status encoded in GTP comments following the test. To run
a test suite the shell scripts ‘test.sh’, ‘eval.sh’, and regress.sh can be used. There are
also Makefile targets to do this. If you make all_batches most of the tests are run.

Game records used by the regression tests are stored in the directory
‘regression/games/’ and its subdirectories.

21.2 Test suites

The regression tests are grouped into suites and stored in files as GTP commands. A
part of a test suite can look as follows:

Connecting with ko at B14 looks best. Cutting at D17 might be
considered. B17 (game move) is inferior.

loadsgf games/strategy25.sgf 61

90 gg_genmove black

#7 [B14|D17]

The game move at P13 is a suicidal blunder.
loadsgf games/strategy25.sgf 249

95 gg_genmove black

#7 [!'P13]

loadsgf games/strategy26.sgf 257
100 gg_genmove black
#7 [M16]*
Lines starting with a hash sign, or in general anything following a hash sign, are inter-
preted as comments by the GTP mode and thus ignored by the engine. GTP commands are

Chapter 21: Regression testing 171

executed in the order they appear, but only those on numbered lines are used for testing.
The comment lines starting with #7 are magical to the regression testing scripts and indi-
cate correct results and expected pass/fail status. The string within brackets is matched as
a regular expression against the response from the previous numbered GTP command. A
particular useful feature of regular expressions is that by using ‘|’ it is possible to specify
alternatives. Thus B14|D17 above means that if either B14 or D17 is the move generated in
test case 90, it passes. There is one important special case to be aware of. If the correct
result string starts with an exclamation mark, this is excluded from the regular expression
but afterwards the result of the matching is negated. Thus !'P13 in test case 95 means that
any move except P13 is accepted as a correct result.

In test case 100, the brackets on the #7 line is followed by an asterisk. This means that
the test is expected to fail. If there is no asterisk, the test is expected to pass. The brackets
may also be followed by a ‘&’, meaning that the result is ignored. This is primarily used to
report statistics, e.g. how many tactical reading nodes were spent while running the test
suite.

21.3 Performing tests

./test.sh blunder.tst runs the tests in ‘blunder.tst’ and prints the results of the
commands on numbered lines, which may look like:

1 E5
F9
018
B7
Ad
E4
E3
A3
9 D9
10 J9
11 B3
12 C6
13 C6

This is usually not very informative, however. = More interesting is ./eval.sh
blunder.tst which also compares the results above against the correct ones in the test
file and prints a report for each test on the form:

1 failed: Correct ’!E5’, got ’Eb’

0 ~NO O WN

2 failed: Correct ’C9|H9’, got ’F9’

3 PASSED

4 failed: Correct ’B5|C5|C4|D4|E4|E3|F3’, got ’B7’
5 PASSED

6 failed: Correct ’D4’, got ’E4’

7 PASSED

8 failed: Correct ’B4’, got ’A3’

9 failed: Correct ’G8|G9|H8’, got ’D9’
10 failed: Correct ’G9|F9|C7’, got ’J9’
11 failed: Correct ’D4|E4|E5|F4|C6’, got ’B3’

Chapter 21: Regression testing 172

12 failed: Correct ’D4’, got ’C6’
13 failed: Correct ’D4|E4|E5|F4’, got ’C6’

The result of a test can be one of four different cases:
e passed: An expected pass
This is the ideal result.
e PASSED: An unexpected pass

This is a result that we are hoping for when we fix a bug. An old test case that used
to fail is now passing.

e failed: An expected failure

The test failed but this was also what we expected, unless we were trying to fix the
particular mistake highlighted by the test case. These tests show weaknesses of the
GNU Go engine and are good places to search if you want to detect an area which
needs improvement.

e FAILED: An unexpected failure

This should nominally only happen if something is broken by a change. However,
sometimes GNU Go passes a test, but for the wrong reason or for a combination of
wrong reasons. When one of these reasons is fixed, the other one may shine through so
that the test suddenly fails. When a test case unexpectedly fails, it is necessary to make
a closer examination in order to determine whether a change has broken something.

If you want a less verbose report, ./regress.sh . blunder.tst does the same thing
as the previous command, but only reports unexpected results. The example above is
compressed to

3 unexpected PASS!
5 unexpected PASS!
7 unexpected PASS!

For convenience the tests are also available as makefile targets. For example, make
blunder runs the tests in the blunder test suite by executing eval.sh blunder.tst. make
test runs all test suites in a sequence using the regress.sh script.

Appendix A: Copying 173

Appendix A Copying

The program GNU Go is distributed under the terms of the GNU General Public License
(GPL). Its documentation is distributed under the terms of the GNU Free Documentation
License (GFDL).

A.1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in

Appendix A: Copying 174

effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered

Appendix A: Copying 175

3.

4.

independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

Appendix A: Copying 176

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have

Appendix A: Copying 177

the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: Copying 178

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

Appendix A: Copying 179

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

A.2 GNU FREE DOCUMENTATION LICENSE

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: Copying 180

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HIT'ML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and

Appendix A: Copying 181

legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other

Appendix A: Copying 182

copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: Copying 183

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying 184

7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix A: Copying 185

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

A.3 The Go Text Protocol License

In order to facilitate the use of the Go Text Protocol, the two files ‘gtp.c’ and ‘gtp.h’
are licensed under the following terms.

Copyright 2001 by the Free Software Foundation.

Permission is hereby granted, free of charge, to any person obtaining a copy of this file
‘gtp.x’, to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and
that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFOR-
MANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software without
prior written authorization of the copyright holder.

Concept Index

Concept Index

A

amalgamation of cavities 73
amalgamation of worms into dragons....... 72,74
APT .o 35
o 145
ascii description of shapes 92
ascii interface............. L 11
asciimode 15
attack code (worm), 69
attack point (worm) 69
attack shapes database....................... 92
autohelper actions 98
Autohelpers........ ... o i 97
automaton il 115

B

border (cave).......... ... i 7
bordercolor................ 68

cache 13
cache-size i 13
cavity. 19
CGoban.covui 10
color (dragon) 7
colored display 33, 79
command line options........................ 12
connection shapes database 92, 104
connections i 74
connections database........................ 104
cutting stone o 70
cutting stone, potential....................... 70

D

data structures L 36
debugboard ool 32
debugging options 16
Debugging the reading code 138
decide-dragon L 31
decide-string 30
defence shapes database...................... 92
defense code (worm) 70
defense point (worm)......................... 70
depth.... ... 14
Depth of reading 122
description of shapes......................... 92
dfa ..o 115
dfac. . oo 115

186
dfah ..o 115
distance from liberty to dragon 69
dragon 19, 67
dragon2 array 80
dragons.......... ... 76
E
effective size (dragon) 7
effective size (worm) 68
eliminate the randomness 109
emacs Mode i 11
escape_route (dragon) 78
eye shapes database.......................... 92
eye space display 33
F
falseeye ... 75
fast pattern matching 115
finite state automaton................, 115
FIXME . ..o 29
format of the pattern database................ 92
G
GDB ..o 32, 138
generation of helper functions................. 97
genus (Aragon)iiiiiiiii... 77
GENUS (WOITI) . .o .v et et et 71
GMP . 12
gnugo’s gdb commands...................... 139
goposition.......... ... 126
grid optimization 110
GTP . 12, 32
H
halfeye........ .. 75
half eye (dragon) 7
Hashnode 126
Hashing of positions 125
helper functions in pattern matching 96
how gnugo learn new joseki.................. 112

How to debug the reading code 138

Concept Index

I

implementation of pattern matching.......... 109
inessential string 71, 73
information gathering 19
installation.......... 5
invincible worm. 72
invoking GNU Go ..., 12

level ... 15
level of play 13
liberties (worm) 69
liberties, higher order (worm)................. 69
licence, documentation (GFDL).............. 179
licence, program (GPL) 173
lunch (dragon) ..., 78
lunch (worm)..........ooiiiiiiiiaan, 70

M

matcher status (dragon)...................... 79
matchpat.c......... 115
move generation.......................... 19, 20
move generators 20
TNOVE TEASOIIS . .+« o v ovte i ee e eee e eeaeenn 20
0010/ T 145
moyodisplay 33

O

origin (dragon)oiiiii.. 7
origin (worm) L. 68
output file.......... 30
owl functions, how to write.................. 142
owlstatus........ 78

187
P
pattern attributes............. 93
pattern database............. 92, 115
pattern matching..................... ... 92, 115
pattern matching optimization............... 110
pattern overview............ oL 92
pattern.c........ 92
pattern.h......... ... 92
Persistent reading cache..................... 131
position....... 126
position struct L il 36, 37
potential cutting stone 70
product 115
R
Read result............. 126
Reading code.................. 122
Reading code debugging tools 138
reading DEPTH 122
Reading optimisation 125
Reading process 122
reading return codes 122
reading shadow 131
reading.C ... 122, 123
reading.h....... 122
return codes. ... 122
S
SCOTING . . o v vttt et e 32
SGF (Smart Go Format) 12
SGF files in memory 43
shape attributes 93
size (dragomn) ..., 7
Smart Go Format............................ 12
speedup of reading process 125
status (dragon).............. 78
status, owl (dragon).......................... 78
string ... o 19, 67
superstring oo i i 19
symmetry and transformations............... 109
symmetry and transformations of shapes 109
T
teaching josekis to GNU Go 112
territory ... 145

The Go Modem Protocol and Go Text Protocol

Concept Index

Braces 30
Transposition table 125
Trying hypothetical moves................... 122
tuning GNU Goo 30
tuning the pattern database 106
tuning the shapes database.................. 106

U

Usage of the stack in reading 122

188

Z

Zobrist hashing algorithm 125

Functions Index

Functions Index

A

accumulate_influence...................... 149
accurate_approxlib........................ 158
add_antisuji_move.......................... 63
add_attack_either_move 63
add_block_territory_move 63
add_connection_move........................ 63
add_cut_movecii . 63
add_defend_both_move....................... 63
add_defense_move................ouiii.... 62
add_expand_moyo_mOvVe....................... 63
add_expand_territory_move 63
add_followup_value......................... 63
add_half_eye............. 90
add_lunch i 62
add_move_TreasOomououiveeennnnnnnn. 64
add_semeai_moveiiiiiiin. 63
add_shape_value............................ 63
add_stone ...t 50
add_strategical_attack_move............... 63
add_strategical_defense_move.............. 63
add_vital_eye_move......................... 63
amalgamate_most_valuable_helper........... 74
approxlib 54
ASSERT . ..ot 160
atari_atari 20, 60, 137
atari_atari_confirm_safety............... 137
atari_atari_try_combination.............. 138
attack....... ... il 123, 136
attack_and_defend......................... 136
attack_either 137
attack_move_Known...................ouunn.. 62
attack2. 124
attack3. 124
attackd 124

B

break_chainci.... 124
break_chain2 125
break_through............................. 137

C

chainlinks i, 54
chainlinks2 ...t 54
change_attack.................... 156
change_defense 156
change_dragon_status...................... 156
clear_boardiiiiiii 50
clear_MOVe_TYeaSOmSouvuveeeennnnnn.n 62

compute_dragon_status 80

189
compute_escape_potential 80
compute_eyesc.iiiiiiiii 89
compute_eyes_pessimistic.............. 89, 141
compute_initial_influence............. 19, 150
compute_move_influence 150
confirm_safety.............. 158
connection_value2.......................... 65
countlib....... 54
COUNtSLONES . ..ot vttt 53
cut_connect_callback...................... 106
cut_possible............ o 156
D
debug_influence_move...................... 150
decrease_depth_values 158
defend_against 156
defendl....... 124
defend2......... ...t 124
defend3...... ..ot 124
defense_move_known......................... 62

do_remove_false_attack_and_defense_moves

.. 65
does_attackl 156
does_capture_something 53
does_defend 156
double_atariiiiiiii... 158
Aragon_€Ye€oveiinetee e 74
dragon_safety 65
dump_stack i 52
E
effective_dragon_size 65
endgame_shapes.......................... 21, 23
estimate_influence_value............... 61, 65
estimate_strategical_value................ 66
estimate_territorial_value............. 60, 65
evaluate_diagonal_intersection............ 90
examine_cavity.............ol 80
examine_position............. 19
@Y€_SPACE . o\ttt 90

Functions Index

F

fi1l libertyo 21
find_cap2 124
find_connection............ ..., 64
find_connections...............coiian.... 106
find_cuts 106
find_defense............., 123, 136
find dragon i 64
find_eye...... 64
find_lunch, 157
find_more_attack_and_defense_moves 65
find_origin........... 53
find_reason 64
find_semeai 64
find_worm 64
find_worm_pair................ 64
findlib..... 54
findstones 53
£0llOWUP. ..ot 95
fuseki.......o. 20

G

gameinfo_clear............... 41
gameinfo_load_sgfheader 42
gameinfo_play move......................... 42
gameinfo_play_sgftree 42
gameinfo_print............ 41
gameinfo_undo_move......................... 42
BENMOVE . ..ottt ettt 19
get_move_from_stack................. 52
get_read_result........................... 130
get_trymove_counter........................ 52
gg_gettimeofday........................... 159
gnugo_add_stone 39
gnugo_attackl 40
gnugo_clear_position....................... 38
gnugo_copy_position........................ 39
gnugo_estimate_score....................... 40
gnugo_examine_position 40
gnugo_find_defense................... 40
gnugo_force_to_globals 40
GNUGO_GENMOVE . ..o vtveeteeeeaes 39
gnugo_is_legal 39
gnugo_is_suicide............. 39
gnugo_placehand 39
gnugo_play _moveouiiiniin... 39
gnugo_play_sgfnode......................... 39
gnugo_play_sgftree......................... 39
gnugo_recordboard.......................... 39
gnugo_remove_stone......................... 39

gnugo_sethand 39

190
gnugo_who_wins.................. 40
goaldump i 143
H
hashdata_compare.......................... 129
hashdata_diff dump..................... ... 129
hashdata_invert_stone 129
hashdata_recalc........................... 129
hashdata_remove_ko........................ 129
hashdata_set_ko........................... 129
hashnode_dump 129
hashnode_new_result 127, 130
hashnode_search........................... 130
hashposition_dump......................... 129
hashtable_clear...................coviu... 130
hashtable_clear_if_full 130
hashtable_dump............................ 130
hashtable_enter_position............. 127, 130
hashtable_init............ 129
hashtable_ new.................ccvirnn.. 129
hashtable_search 127, 130
I
increase_depth_values 158
incremental_order_moves 54
induce_secondary_move_reasons............. 65
influence_area_color...................... 150
influence_delta_area...................... 150
influence_delta_moyo...................... 150
influence_delta_strict_area.............. 150
influence_delta_strict_moyo.............. 150
influence_delta_territory................ 150
influence_moyo_color...................... 150
influence_territory_color................ 150
init_gnugo 36
is_antisuji_move.............., 66
is_illegal_ko_capture 53
1S _ KO .o 52
is_legal ... 24, 52
1S PaASS . it 52
is_self_atari..............ciiiiiii. .. 53
is_suicide 53
is_worm_origin............ 158
J
join_dragons 80

Functions Index

K

komaster_trymove........................... 52

L

liberty_of_string.......................... 53
location_to_string........................ 160

M

make_domainsiiiiii 89
make_dragons................ ... 20, 80
MAKE_WOTTS . . v ot vt e ee e eeeeeeeeeeeenns 19, 80
marginal_eye_space......................... 90
mark_string 53
MaXterTi.o 95
MInBerTi... ..ot 95
minvalue.tvim 95
modify_depth_values....................... 158
modify_eye_spacesl........................ 106
move_in_stack i 52
MOVe_reason _KNOWIveeeunnnenennn. 64

N

neighbor_of_string......................... 53

O

originate_eye 89
OTHER_COLORttt 37
owl_attack...........cooviiiiniin.. 141, 143
owl_connection_defends 143
owl_defend............................ 141, 143
owl_does_attack..............coiiiuninn.. 143
owl_does_defend........................... 143
oWl _livelyovuniiii i 144
OWLl_TeasSOonsS vvviie i, 20, 143
owl_substantial 144
owl_threaten_attack....................... 143
owl_threaten_defense...................... 143

P

play_attack_defend n...................... 157
play_attack defend2 n.................... 157
play_break_through n...................... 157
Play_move 51
POPEO « vttt 24, 52
print_eye ... 89

propagate_worm................ovuueunnunn.. 80

191
PTOPEY _€Y€_SPACE . . . ooveeteeeiaeainnn 90
propogate_eye i 89
purge_persistent_reading_cache........... 131
R
read_result_dump.......................... 129
READ_RETURNo, 130
READ_RETURNOciiiienn.. 130
readsgffile 46
remove_attack_move......................... 62
remove_defense_move........................ 62
remove_eyepoint 90
remove_half _eye.............. 90
remove_lunch 62
TEeMOVEe _MOVE_Y@ASOI . « v oot v eev e eeeenenennns 64
remove_opponent_attack_and_defense_moves
.. 65
TEMOVE_StONE . ..ot vt ettt 50
reset_trymove_counter 52
restore_depth_values...................... 158
revView_MOVEe_T@ASONS ovuvrrererennnnnn.. 64
revise_semeai 21
rr_get_pos_i........l 130
Tr_@et_POS_J .o 130
rr_get_routine................ 130
rr_get_stackp............. L. 130
S
safe _MoOVe 124
same_dragoniiiiiiii.., 158
same_string i, 54
SAME_WOTT .« . vt v et ettt e e e ettt e e eeeeee e 158
search_persistent_reading_cache.......... 131
SeMEAL . oot vttt 20
set_maximum_move_value 64
set_maximum_territorial_value............. 64
set_minimum_move_value 64
set_minimum_territorial_value............. 64
set_temporary_depth_values............... 158
setup_board il 50
sgf_write_header.............., 46
sgfAddChild, 46
sgfAddComment 46
sgfAddPlay 45
sgfAddPlayLast 45
sgfAddProperty 44
sgfAddPropertyFloat........................ 44
sgfAddPropertyInt.......................... 44
sgfAddStonel 45
sgfBoardChar 46

Functions Index

sgfBoardNumber 46
sgfBoardText ..., 46
sgfCircleo 45
sgfCreateHeaderNode........................ 46
sgfGetCharProperty......................... 44
sgfGetFloatProperty................ovuu.... 44
sgfGetIntProperty......... ..., 44
sgfMark....... 46
sgfMkProperty 44
sgfNewNode 44
sgfOverwriteProperty....................... 45
sgfOverwritePropertyFloat 45
sgfOverwritePropertyInt 45
SgEPTrev. 44
sgfPrintCharProperty....................... 45
sgfPrintCommentProperty 45
SgfROOL 44
sgfSquarel 45
sgfStartVariant............................ 46
sgfStartVariantFirst....................... 46
sgftree_clear 47
sgftree_readfile................. 47
sgftreeAddComment 48
sgftreeAddPlay 47
sgftreeAddPlaylast......................... 47
sgftreeAddStone 48
sgftreeBoardChar........................... 48
sgftreeBoardNumber......................... 48
sgftreeBoardText 48
sgftreeCircle, 48
sgftreeCreateHeaderNode 48
sgftreeMark 48
sgftreeNodeCheck........................... 47
sgftreeSetLastNode......................... 48
sgftreeSquare 48
sgftreeStartVariant........................ 48
sgftreeStartVariantFirst 48

sgftreeTriangle............................ 48

192
sgftreeWriteResult......................... 48
sgfTriangle 46
sgfWriteResult 45
shape....... 95
shapes.............. i 20
shapes_callback............................ 92
show_dragons 80
small_semeaicouiiiiiiinininnann. 123
snapback 125
status_to_string............ 160
stones_on_board............................ 53
store_persistent_reading cache........... 131
strategically_sound_defense............... 65
T
terri.... ... 95
topological_eye............oouiiiiiiin... 90
TRACE. 160
TRY_MOVE. 51
tryko. 51
TXymove ... 24, 51
U
unconditional _life......................... 72
\%

Valueo 95
value_MOVe_TreasOnS..........veuueunnennnenn.. 66
Value_MOVES . ..ot ittt et ettt 66
vgprintf ... 159
vital_chain........................... 144, 159
\%%

writesgf...... 46

Table of Contents

1 Introduction............................... 1
1.1 About GNU Go and this Manual 1
1.2 Copyrights.oov 1
1.3 Authors...........oo i 2
1.4 ThanKks...... ..o 2
1.5 The GNU Go Task List.......... 2
2 Installation........................ ... 5
2.1 GNU/Linuxand Unix............ ..., 5
2.1.1 RamCache 6
2.1.2 Default Level............ 6
2.1.3 DFA Configure Option.......................... 6
2.2 Compiling GNU Go on Microsoft platforms 6
2.2.1 Windows 95/98, MS-DOS and Windows 3.x using
DIGPP .. 7
2.2.2 Windows NT, Windows 95/98 using Cygwin. 7

2.2.3 Windows NT, Windows 95/98 using MinGW32 ... 8
2.2.4 Windows NT, Windows 95/98 using Visual C and

project files. ... i 8

2.2.5 Running GNU Go on Windows NT and Windows
95/98 e 9
2.3 Macintosh 9
3 UsingGNU Go.........covviiiiin... 10
3.1 Getting Documentation..................., 10
3.2 Running GNU Go via CGoban 10
3.3 Asciilnterface 11
34 GNUGomodein Emacs................................ 11
3.5 Running GNU GoviaJago 12
3.6 The Go Modem Protocol and Go Text Protocol 12
3.7 Computer Go Tournaments 12
3.8 Smart GoFormat 12
3.9 Invoking GNU Go: Command line options 12
3.9.1 Some basicoptions L 13
3.9.2 Other general options: 13
3.9.3 Other options affecting strength and speed 14
3.9.4 Ascii Mode Options.................cooiiii... 15

3.9.5 Development options: 15

4 GNU Go engine overview 19

4.1 Definitions. ... 19
4.2 Move Generation Basics 19
4.2.1 Information gathering.......................... 19

4.2.2 Move generation in GNU Go 3.0................ 20

4.2.3 Selecting the Move............ 21

4.3 Examining the Position................, 21
4.4 Sequence of Events............ 23
4.5 Roadmap.......ooiii 23
4.5.1 Filesin ‘engine/’......... 24

4.5.2 Filesin ‘patterns/’ 26

4.6 Coding styles and conventions........................... 28
4.6.1 Coding Conventions 28

4.6.2 Tracing.........oooieiii i 28

4.6.3 Assertions..............iiiii 29

464 FIXME..... ... o 29

4.7 Navigating the Source 29
5 Analyzing GNU Go’s moves............... 30
5.1 Interpreting Traces............ ... 30
5.2 The Output File 30
5.3 Checking the reading code 30
5.4 Checking the Owlcodeo . 31
5.5 GTP and GDB techniques.............................. 32
5.6 Debugboard 32
5.7 Scoringthegame................. 32
5.8 Colored Display ... 33
5.8.1 Dragon Display.................c i 33

582 EyeSpaceDisplay 33

5.83 MoyoDisplaycoiii 33

6 Application Programmers Interface to GNU

o 35
6.1 How to use the engine in your own program: getting started

... 36

6.2 Basic Data Structures in the Engine 36

6.3 The Position Struct 37

6.4 Functions which manipulate a Position................... 38

6.4.1 Functions which manipulate the go position...... 38

6.4.2 Status functions............ L 40

6.4.3 Special functions L 40

6.5 Game handling............. 40

6.5.1 Functions which manipulate a Gameinfo......... 41

7 Handling SGF trees in memory............ 43
7.1 Functions which manipulate SGF nodes and properties.... 44
7.1.1 Low level functions 44

7.1.2 Functions which manipulate SGF properties 44

7.1.3 Functions which manipulate SGF nodes 45

7.1.4 High level functions............................ 46

7.2 The SGFTree datatype ..., 47
7.2.1 Functions that manipulate sgftrees.............. 47

8 The Board Library........................ 49
8.1 Board Data structures................ 49
8.2 Board Functions, 50
8.2.1 Setup Functions 50

8.2.2 Move Functions 51

8.2.3 Status Functions............................... 52

8.2.4 String and Miscellaneous Functions 53

8.2.5 Miscellaneous Functions........................ 54

8.3 Hashing of Board Positions 54
9 Movegeneration.................ccccuu... 55
9.1 Introduction i 55
9.2 OVEIVIEW . .ottt ettt e 55
9.3 Information gathering 55
9.4 Generation of MoOve reasonsc.ooveiineei.... 56
9.5 Detailed Descriptions of various Move Reasons 57
9.5.1 Attacking and defending moves................. 57

9.5.2 Threats to Attack or Defend.................... 58

9.5.3 Not working attack and defense moves 58

9.5.4 Multiple attack or defense moves................ 58

9.5.5 Cutting and connecting moves.................. 58

9.5.6 Semeai Winning moves 58

9.5.7 Making or destroying eyes...................... 59

9.5.8 Antisujimovesoiiiiiiiiiii 59

9.5.9 Territorial moves 59

9.5.10 Attacking and Defending Dragons.............. 59

9.5.11 Combination Attacks 60

9.6 Valuation of suggested moves 60
9.6.1 Territorial Value............................... 60

9.6.2 Influence Value................ 61

9.6.3 Strategical Value, 61

9.6.4 Shape Factor................., 61

9.6.5 Minimum Value 61

9.6.6 Secondary Value................ 62

9.7 Move Generation Functions 62
9.8 Local Move Generation Functions 64
9.9 End Game...........oiiiii 66

iii

10 Worms and Dragons..................... 67
101 WOrms . ..o 67
10.2 Amalgamationoiiiiniiii . 72
10.3 Amalgamation of cavities.............................. 73
10.4 Amalgamation of strings....................., 74
10.5 Connection 74
10.6 Half Eyes and False Eyes 75
10.7 Dragomnsot 76
10.8 Colored Dragon Displaycooiiii .. 79
10.9 Worm and Dragon Functions........................... 79
10.10 The Second Dragon Array............ccouueeeeoioi... 80

11 Eyesand HalfEyes...................... 82
11.1 Local gamesc.o oo, 82
11.2 Eye SPaces.ttt 82
11.3 The eyespace as local game 83
114 Anexample. i 85
115 Graphs. ... 86
11.6 Eyeshapeanalysis............ 87
11.7 Topology of Half Eyes and False Eyes................... 87
11.8 False Margins............oo i 88
11.9 Functions in ‘optics.c’ ... 89

12 The Pattern Code 92
12,1 OVEIVIEW .o ovt et 92
12.2 Pattern Attributes 93

12.2.1 Constraint Pattern Attributes 93

12.2.2 Action Attributes....................... ..., 94
12.3 Pattern Attributes 95
12.4 Helper Functions. o it 96
12.5 Autohelpers and Constraints........................... 97
12.6 Autohelper Actions............ 98
12.7 Autohelper Functions............... 98
12.8 Attack and Defense Database 104
12.9 The Connections Database............................ 104
12.10 Connections Functions............................... 106
12.11 Tuning the Pattern databases..................... ... 106
12.12 Implementation............... 109
12.13 Symmetry and transformations....................... 109
12.14 Implementation Details.............................. 110
12.15 The “Grid” Optimization............................ 111
12.16 The Joseki Compiler 112

12.17

Ladders in Josekioii i 113

v

13 The DFA pattern matcher 115

13.0.1 Using DFA........ i, 115

13.0.2 ScanPath 115

13.0.3 WhatisaDFA 116

13.0.4 Pattern matching with DFA 118

13.0.5 Buildingthe DFA 119

13.0.6 Incremental Algorithm....................... 120

13.0.7 Some DFA Optimizations 121

14 Tacticalreading 122
14.1 Reading Basics........... i 122

14.2 Hashing of Positions............. 125

14.2.1 Calculation of the hash value................. 126

14.2.2 Organization of the hash table................ 126

14.2.3 Hash Structures............ 127

14.2.4 Hash Functions........... 129

14.2.5 Persistent Reading Cache 131

14.3 Ko Handling........... ... i 131

14.4 AKoExample........ 133

14.4.1 Essentially the 2.7.232 scheme. 135

14.4.2 Revised 2.7.232 version 135

14.5 Superstringsoover e 135

14.6 Reading Functions 136

14.7 Debugging the reading code........................... 138

15 Life and Death Reading................. 141
15.1 The Owl Codecvovi i 141

15.2 Functions in ‘owl.c’o 142

16 Influence Function...................... 145
16.1 Conceptual Outline of Influence 145

16.2 The Core of the Influence Function 145

16.3 The Core of the Influence Function 146

16.4 Permeability......... 147

16.5 Escape....... ..o 148

16.6 Influential Functions, 149

16.7 Colored display and debugging of influence............. 150

17 MOYO .ottt i i i e ieennnn 152
17.1 Bouzy’s 5/21 algorithm................ 152

18 Utility Functions 156
18.1 General Utilities 156

18.2 Print utilitiest 159

19 Incremental Algorithms in Reading...... 161

20 The Go Text Protocol 164

20.1 The GNU Go Text Protocol 164

20.2 Regression testing with GTP.......................... 169

21 Regression testing...................... 170

21.1 Regression testing in GNU Go 170

21.2 Test SUites.oovnvi 170

21.3 Performing tests i 171

Appendix A Copyingcovveeeeeee... 173

A.1 GNU GENERAL PUBLIC LICENSE 173

Preamble. 173
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATIONo 174

How to Apply These Terms to Your New Programs........... 178

A.2 GNU FREE DOCUMENTATION LICENSE 179

ADDENDUM: How to use this License for your documents. ... 185

A.3 The Go Text Protocol License 185

Concept Index...............ccoiiii.... 186

Functions Indexciiien... 189

vi

